基于密集空洞金字塔的SAR多尺度道路检测
DOI:
CSTR:
作者:
作者单位:

1.电子科技大学成都学院 成都 611731;2.电子科技大学信息与通信工程学院 成都 611731

作者简介:

通讯作者:

中图分类号:

TN959.17

基金项目:

国家自然科学基金面上项目(62271116)资助


SAR multi-scale road detection based on dense dilated pyramid
Author:
Affiliation:

1.Chengdu College, University of Electronic Science and Technology of China,Chengdu 611731,China;2.School of Information and Communication Engineering, University of Electronic Science and Technology of China,Chengdu 611731,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    SAR图像中道路检测,能够实现不同复杂背景条件下不同尺度道路目标的精确判别,在战场监测、目标定位和跟踪等军事和民用领域中,发挥着重大的作用。相较于利用边缘检测或区域分割等方法提取道路的传统方法,目前基于卷积神经网络的方法具有优秀的特征提取能力和准确的分割效果,在道路检测中发挥着越来越重要的作用。然而SAR数据集往往包含多种分辨率图像,道路尺度不一,所需感受野不同,导致目前的方法仍难以解决多尺度道路检测问题。针对上述问题,本文提出了一种基于密集空洞金字塔网络的多尺度道路检测方法。该方法将密集连接与U-net结合,通过渐进式空洞率设计替代传统固定空洞率结构,在编码器中构建密集空洞金字塔模块,逐步扩展感受野以适配不同分辨率道路特征;结合多尺度注意力机制,动态融合浅层细节与深层语义信息,抑制复杂背景干扰,能够增强特征图的提取,提升对于小尺度道路的检测性能。针对高分三号SAR图像数据的试验结果表明,本文提出的网络在1 m、3 m、10 m分辨率下平均交并比达到74.39%、68.01%、66.32%,较对比方法提升2.04%~13.7%。针对于同幅图像中不同尺度道路以及不同分辨率SAR图像中的不同道路,本文所提方法均能有效降低对细小道路的漏检,同时能降低环境干扰带来的虚警,相较于其他方法能够达到最优的道路检测性能。

    Abstract:

    Road detection in Synthetic Aperture Radar (SAR) images enables precise identification of multi-scale road targets under complex backgrounds, playing a critical role in military and civilian applications such as battlefield surveillance, target localization, and disaster response. Compared to traditional methods relying on edge detection or region segmentation, Convolutional Neural Network (CNN)-based approaches exhibit superior feature extraction and segmentation accuracy. However, existing methods still struggle with multi-scale road detection due to the diverse resolutions and varying receptive fields required for roads of different scales in SAR datasets. To address these challenges, this paper proposes a multi-scale road detection method based on a Dense Dilated Pyramid Network. The method integrates dense connections into a U-Net architecture, replacing traditional fixed-dilation-rate structures with progressive dilation rates to construct a dense dilated pyramid module in the encoder. This design progressively expands the receptive field to adapt to multi-resolution road features. Additionally, a multi-scale attention mechanism dynamically fuses shallow details and deep semantic information while suppressing background interference. Experiments on Gaofen-3 SAR datasets demonstrate that the proposed method achieves mean Intersection over Union values of 74.39%, 68.01% and 66.32% at 1 m, 3 m and 10 m resolutions, respectively, outperforming state-of-the-art methods by 2.04%~13.7%. The method significantly reduces missed detections of small-scale roads and lowers false alarms caused by environmental interference, achieving optimal detection performance across multi-scale scenarios in both single-image and cross-resolution settings.

    参考文献
    相似文献
    引证文献
引用本文

张慧,牟立强,覃熠,崔宗勇.基于密集空洞金字塔的SAR多尺度道路检测[J].电子测量技术,2025,48(16):150-157

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告