基于改进YOLOv10的液晶显示屏表面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

四川轻化工大学机械工程学院 宜宾 644600

作者简介:

通讯作者:

中图分类号:

TN873.93

基金项目:

四川省中央引导地方科技发展专项(2024ZYD0300)、2024年度宜宾市科技成果转移转化引导计划项目(2024CG009)资助


Liquid crystal display surface defect detection algorithm based on improved YOLOv10
Author:
Affiliation:

College of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 644600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对液晶显示屏(LCD)表面缺陷特征微弱、种类繁多且与背景相似度较高,导致现有检测方法精度较低的问题,提出了一种基于YOLOv10的改进液晶显示屏微弱缺陷检测模型—LC-YOLO。首先,将颈部网络上的卷积模块更改为全维动态卷积ODConv,在保证模型检测精度的同时降低了模型的计算量,提高对小缺陷特征信息的精确提取。其次,为进一步优化模型的性能,提出DySample动态上采样模块。通过点采样的方式避免背景的干扰,减少了误检和漏检现象。提高了模型在复杂背景下的鲁棒性。最后,为了增强模型对小目标的提取能力,本文引入了添加EMAttention注意力机制。该机制增强了模型对小型和暗淡目标的关注能力,从而显著提高了模型整体性能。在包含划痕、崩角、凹印3类缺陷的1 774张数据集上进行的实验结果表明,与原YOLOv10模型相比,LC-YOLO在平均精度、准确率和召回率上分别提高了2.9%、2.4%和5.8%。同时,模型的计算量也减少了2%。与现有的目标检测算法相比,LC-YOLO在保持轻量化特性的同时,精度和检测速度也获得了提升,且在液晶屏表面微弱特征缺陷的检测中表现出优异的性能。

    Abstract:

    In response to the challenges posed by the weak characteristics, diverse types, and high similarity with the background of surface defects in liquid crystal displays (LCDs), which result in low detection accuracy with existing methods, this paper proposes an improved micro-defect detection model for LCDs based on YOLOv10, referred to as LC-YOLO. First, the convolutional module in the neck network is replaced with a full-dimensional dynamic convolution (ODConv), which reduces the computational load of the model while maintaining detection accuracy and improving the precise extraction of small defect features. Next, to further optimize the model′s performance, the DySample dynamic upsampling module is introduced. This module avoids background interference by point sampling, thereby reducing false positives and false negatives, and enhancing the model′s robustness in complex backgrounds. Finally, to enhance the model′s ability to detect small targets, the EMAttention attention mechanism is incorporated. This mechanism improves the model′s sensitivity to small and dim targets, significantly boosting overall performance. Experimental results on a dataset of 1,774 images containing three types of defects—scratches, corner breaks, and dents—demonstrate that compared to the original YOLOv10 model, LC-YOLO improves mean average precision,accuracy rate, and recall by 2.9%, 2.4%, and 5.8%. Meanwhile, the computational load of the model is reduced by 2%. When compared to existing object detection algorithms, LC-YOLO not only retains its lightweight characteristics but also enhances detection accuracy and speed, showing excellent performance in detecting subtle surface defects in LCDs.

    参考文献
    相似文献
    引证文献
引用本文

杨瑞峰,廖映华,罗覃鹏,罗星燃.基于改进YOLOv10的液晶显示屏表面缺陷检测算法[J].电子测量技术,2025,48(15):70-79

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告