基于SSA优化的Transformer-BiGRU 短期风电功率预测
DOI:
CSTR:
作者:
作者单位:

兰州理工大学计算机与通信学院 兰州 730050

作者简介:

通讯作者:

中图分类号:

TM614;TN-9

基金项目:

甘肃省自然科学基金(18JR3RA156)、兰州科技计划项目(2017-4-105)资助


Short-term wind power prediction based on SSA-optimized Transformer-BiGRU
Author:
Affiliation:

School of Computer and Communication Engineering, Lanzhou University of Technology,Lanzhou 730050, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高风电功率预测精度,提出了一种基于SSA优化的TransformerBiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构建了一个高效的组合模型。针对Transformer-BiGRU模型超参数优化困难的问题,引入SSA麻雀搜索算法对超参数进行优化,进一步提升预测精度。最后,以龙源电力风电预测数据集为例,通过对比实验和消融实验验证了该模型优于其他传统模型和模型中各组件的有效性,实验结果表明该方法的R2达到了0.981 0。

    Abstract:

    To improve wind power prediction accuracy, a combination model based on SSA-optimized Transformer-BiGRU is proposed. First, CEEMDAN decomposes the original sequence into multiple modal components and a residual component, reducing data complexity and instability. Then, a high-efficiency combined model is constructed by integrating the self-attention mechanism of the Transformer with the bidirectional time-series modeling capability of BiGRU. To address the challenge of hyperparameter optimization for the Transformer-BiGRU model, the SSA algorithm is introduced to optimize the hyperparameters, further enhancing prediction accuracy. Finally, using the Longyuan Electric Power wind power prediction dataset, comparative and ablation experiments are conducted to show that the proposed model outperforms other traditional models and demonstrates the effectiveness of each component. The experimental results indicate that the method achieves an R2 of 0.981 0.

    参考文献
    相似文献
    引证文献
引用本文

包广斌,杨龙龙,范超林,李焕.基于SSA优化的Transformer-BiGRU 短期风电功率预测[J].电子测量技术,2025,48(13):139-147

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告