基于改进YOLOv11的太阳能电池板缺陷检测
DOI:
CSTR:
作者:
作者单位:

兰州理工大学计算机与通信学院 兰州 730050

作者简介:

通讯作者:

中图分类号:

TP391.4;TN247

基金项目:

甘肃省自然科学基金(18JR3RA156)项目资助


Solar panel defect detection based on improved YOLOv11
Author:
Affiliation:

School of Computer and Communication, Lanzhou University of Technology,Lanzhou 730050, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现阶段太阳能电池板缺陷检测方法精度低、速度慢的问题,提出了一种基于改进YOLOv11的缺陷检测算法。首先,在骨干网络中引入SimSPPF模块,优化了特征提取过程。此外,采用Slide Loss损失函数提升了模型对困难样本的关注度。同时,在C2PSA中引入LSKA注意力机制,利用分离卷积核增强特征提取能力,并应用Mish激活函数增强网络非线性。最后,引入Strip Pooling策略,提高了模型对目标形状和分布变化的适应性。实验结果显示,改进算法Persion达到86.8%,较原始算法提高3.3%,mAP@0.5达到90.1%,较原始算法提高2.6%,检测速度达到149.254 fps,满足工业生产中太阳能电池板缺陷检测高精度、高效率的要求。

    Abstract:

    In order to solve the problems of low accuracy and slow speed of the current solar panel defect detection method, a defect detection algorithm based on improved YOLOv11 was proposed. Firstly, the SimSPPF module is introduced into the backbone network to optimize the feature extraction process. In addition, the Slide Loss function is used to improve the attention of the model to difficult samples. At the same time, the LSKA attention mechanism is introduced into C2PSA, the split convolutional kernel is used to enhance the feature extraction ability, and the Mish activation function is used to enhance the network nonlinearity. Finally, the Strip Pooling strategy was introduced to improve the adaptability of the model to the changes of target shape and distribution. The experimental results show that the improved algorithm Persion reaches 86.8%, which is 3.3% higher than the original algorithm, mAP@0.5 reached 90.1%, an increase of 2.6% compared with the original algorithm, The detection speed reaches 149.254 fps, which meets the requirements of high precision and high efficiency of solar panel defect detection in industrial production.

    参考文献
    相似文献
    引证文献
引用本文

包广斌,范超林,罗曈,阚洪丽.基于改进YOLOv11的太阳能电池板缺陷检测[J].电子测量技术,2025,48(17):16-25

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告