改进YOLOv11的无人机航拍图像检测算法
DOI:
CSTR:
作者:
作者单位:

兰州交通大学电子与信息工程学院 兰州 730000

作者简介:

通讯作者:

中图分类号:

TP391.4; TN919.8

基金项目:

国家自然科学基金(62241204)项目资助


Improved UAV aerial image detection algorithm for YOLOv11
Author:
Affiliation:

School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍图像检测任务中,存在目标尺寸微小且背景环境复杂,往往会导致漏检和误检的问题,本文提出了一种基于YOLOv11的航拍图像小目标检测算法WT-YOLO。首先,考虑到无人机航拍图像普遍为小目标的问题,调整了YOLOv11颈部网络的结构,改变了输出特征图的尺寸,提高了算法对小目标的检测能力。其次,结合WTConv,重新设计了Bottleneck和C3k2模块的结构,命名为C3k2-WT,来实现特征的高效提取。再次,引入Focal-Modulation来替换SPPF,通过在不同的空间尺度上聚焦和调制特征,使得模型在处理复杂场景时更具鲁棒性;最后,设计了共享卷积检测头,通过卷积共享机制,减少了模型的参数量,同时增强了特征图之间的全局信息融合能力。改进后的算法在VisDrone2019数据集上的实验表明,相较于基础YOLOv11s模型,准确率(P)、召回率(R)和检测精度(mAP50)分别提升了5.6%,5.9%和7.5%,并且参数量下降了约1/4,对比其他算法表现出了良好的性能。

    Abstract:

    Aiming at the UAV aerial image detection task, there are problems of tiny target size and complex background environment, which often lead to leakage and misdetection, this paper proposes a small target detection algorithm WT-YOLO based on YOLOv11 for aerial images. First of all, taking into account the problem that UAV aerial images are generally small targets, the structure of the YOLOv11 necking network is adjusted, and the output feature map is changed size, which improves the algorithm's ability to detect small targets. Secondly, the structure of Bottleneck and C3k2 module, named C3k2-WT, is redesigned in combination with WTConv to realize the efficient extraction of features. Again, Focal-Modulation is introduced to replace SPPF, which makes the model more robust in dealing with complex scenes by focusing and modulating the features at different spatial scales; finally, the shared convolution detection head is designed to reduce the number of parameters of the model through the convolution sharing mechanism, while enhancing the global information fusion capability between feature maps. The experiments of the improved algorithm on the VisDrone2019 dataset show that compared with the base YOLOv11s model, the accuracy (P), recall (R), and detection precision (mAP50) are improved by 5.6%, 5.9%, and 7.5%, respectively, and the number of params decreases by about one-fourth, which shows a good performance compared with other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

李珺,丁彬彬,史维娟,杨琳.改进YOLOv11的无人机航拍图像检测算法[J].电子测量技术,2025,48(18):111-121

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告