基于多尺度残差融合的水下图像增强网络
DOI:
CSTR:
作者:
作者单位:

黑龙江科技大学计算机与信息工程学院 哈尔滨 150022

作者简介:

通讯作者:

中图分类号:

TP391;TN911.73

基金项目:

国家自然科学基金(61803148)、黑龙江省哲学社会科学研究规划项目(23YSD245)、黑龙江省属高等学校基本科研业务费项目(2024-KYYWF-1099)资助


Underwater image enhancement network based on multi-scale residual fusion
Author:
Affiliation:

School of Computer & Information Engineering, Heilongjiang University of Science & Technology,Harbin 150022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下图像存在蓝绿色偏、清晰度与对比度低等因素严重影响水下研究的准确性和可靠性。针对上述问题,本文提出了一种基于多尺度残差融合的水下图像增强网络。首先,提出一个多尺度通道特征提取模块MSCFE,MSCFE模块对各个通道独立建模,避免通道之间的信息干扰,同时引入通道注意力对关键特征进行强化,有效增强颜色与细节。然后,提出一个全局-局部色彩校正模块GLCC,GLCC模块采用局部与全局两分支分别对局部颜色细节和长程依赖关系进行建模以校正图像色彩。实验表明,在UIEB数据集上,增强后的图像的结构相似性达到了0.937 8、峰值信噪比达到了23.768 7、水下彩色图像质量评价指标达到了0.568 9、图像信息熵达到了7.572 3;在EUVP数据集上,增强后的图像的结构相似性达到了0.910 5、峰值信噪比达到了25.169 9、水下彩色图像质量评价指标达到了0.525 3、图像信息熵达到了7.347 9,优于其他主流方法。

    Abstract:

    The existence of blue-green bias, low clarity and contrast of underwater images seriously affects the accuracy and reliability of underwater research. To address the above problems, this paper proposes an underwater image enhancement network based on multi-scale residual fusion. Firstly, a multi-scale channel feature extraction module MSCFE is proposed. The MSCFE module models each channel independently to avoid information interference between channels, and at the same time, channel attention is introduced to enhance the key features to effectively enhance the colour and details. Then, a global-local colour correction module GLCC is proposed, and the GLCC module adopts two branches, local and global, to model the local colour details and long-range dependencies respectively to correct the image colour. The experiments show that on the UIEB dataset, the structural similarity of the enhanced image reaches 0.937 8, the peak signal-to-noise ratio reaches 23.768 7, the underwater colour image quality evaluation index reaches 0.568 9, and the image information entropy reaches 7.572 3; on the EUVP dataset, the structural similarity of the enhanced image reaches 0.910 5, the peak signal-to-noise ratio reaches 25.169 9, underwater colour image quality evaluation index reached 0.525 3, and image information entropy reached 7.347 9, which are better than other mainstream methods.

    参考文献
    相似文献
    引证文献
引用本文

张剑飞,李浩.基于多尺度残差融合的水下图像增强网络[J].电子测量技术,2025,48(17):169-177

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告