PSSN-YOLO:风机表面缺陷检测模型
DOI:
CSTR:
作者:
作者单位:

陕西理工大学机械工程学院 汉中 723000

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

陕西理工大学人才启动项目(SLGRCQD2102)资助


PSSN-YOLO: A surface defect detection model for wind turbines
Author:
Affiliation:

School of Mechanical Engineering, Shaanxi University of Technology,Hanzhong 723000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风力发电机作为清洁能源系统的核心设备,其表面容易产生各种类型的缺陷,会严重影响设备的运行效率与安全性,因此及时发现并处理其表面缺陷至关重要。针对现有算法存在的漏检、误检以及小目标检测精度不足等问题,本文提出了一种改进YOLOv8的风机表面缺陷检测算法:PSSN-YOLO。该算法首先新增一个小目标检测层,可以为模型提供更多的尺度信息;使用Slim-neck范式作为特征融合网络,提高检测精度的同时减小模型的参数量;在每个检测头前嵌入SE注意力机制,使模型更加关注有用的特征通道,增强在复杂环境中对缺陷的检测能力;最后采用归一化NWD距离改进损失函数,使模型能更好衡量检测任务中边界框之间的相似性。实验结果表明,改进后的算法相比原算法在精确率P、召回率R和mAP50上分别提高1.1%、4.4%和2.6%,在提升检测精度的同时还降低了8.97%的参数量,能够更好地满足风力发电机表面缺陷检测的实际需求。

    Abstract:

    As a core component of clean energy systems, wind turbines are prone to various surface defects that severely impact operational efficiency and safety, making timely detection and treatment crucial. To address issues such as missed detections, false alarms, and insufficient accuracy in small target detection, this paper proposes an improved YOLOv8-based algorithm for wind turbine surface defect detection: PSSN-YOLO. The algorithm introduces a small target detection layer to provide multi-scale information, employs the Slim-neck paradigm as the feature fusion network to enhance detection accuracy while reducing model parameters, embeds the SE attention mechanism before each detection head to focus on critical feature channels and improve defect detection in complex environments, and optimizes the loss function using normalized NWD distance to better measure bounding box similarity. Experimental results demonstrate that the improved algorithm achieves increases of 1.1%, 4.4%, and 2.6% in precision (P), recall (R), and mAP50, respectively, while reducing parameter count by 8.97%, better satisfying the practical requirements for wind turbine surface defect detection.

    参考文献
    相似文献
    引证文献
引用本文

鄯思睿,姚小敏,陈曼龙,柴玉娇,李伟. PSSN-YOLO:风机表面缺陷检测模型[J].电子测量技术,2025,48(16):189-196

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告