基于ARS-YOLOv9s的PCB缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学江苏省气象探测与信息处理重点实验室 南京 210044;2.江苏省工业环境危害要素监测与 评估工程研究中心 无锡 214105;3.南京信息工程大学江苏省气象传感网技术工程中心 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391;TN912

基金项目:

国家自然科学基金(41075115)、江苏省重点研发计划社会发展项目(BE2015692)、无锡市社会发展科技示范工程项目(N20191008)资助


PCB defect detection algorithm based on ARS-YOLOv9s
Author:
Affiliation:

1.Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology,Nanjing 210044, China;2.Jiangsu Engineering Research Center for Monitoring and Assessment of Industrial Environmental Hazard Elements,Wuxi 214105, China;3.Jiangsu Meteorological Sensor Network Technology Engineering Center, Nanjing University of Information Science and Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有印刷电路板缺陷小、种类多、特征不明显的问题,提出了一种基于ARS-YOLOv9s的缺陷检测算法,该算法在YOLOv9s网络架构基础上进行优化。针对原算法在多尺度特征融合时存在信息丢失的问题,融入AFPN对图像进行特征融合从而丰富语义信息;通过在主干网络中引入iRMB注意力机制,提升浅层特征中微小缺陷的关注度;针对目标缺陷特征较小的问题,删除大目标检测层并新增微小目标检测层,模型轻量化的同时并提高其检测精度;将原模型损失函数替换为Shape-IoU以期改善正负样本不均衡对模型的影响,加速模型收敛。实验结果表明,本文算法mAP为98%,mAP@0.5:0.95为68.2%,相较于原YOLOv9s分别提升了2.8%、9.3%,且各个类别缺陷mAP均有明显提升,证明了本文算法的有效性。

    Abstract:

    Aiming at the problems of small, diverse and inconspicuous features of existing printed circuit board defects, a defect detection algorithm based on ARS-YOLOv9s is proposed, which is optimised on the basis of YOLOv9s network architecture. To address the problem of information loss in multi-scale feature fusion in the original algorithm, AFPN is integrated into the image feature fusion so as to enrich the semantic information; by introducing the iRMB attention mechanism in the backbone network, the attention to the tiny defects in the shallow features is improved; to address the problem of the small target defects, the large target detection layer is deleted and a new tiny target detection layer is added, which lightens the model and improves the detection accuracy; the original model loss function is replaced by the loss function, and the original model loss function is replaced by the loss function, and the original model loss function is replaced by the loss function. The original model loss function is replaced by Shape-IoU to improve the impact of positive and negative sample imbalance on the model and accelerate model convergence. The experimental results show that the mAP of this paper′s algorithm is 98%, and that of mAP@0.5:0.95 is 68.2%, which is 2.8% and 9.3% higher than that of the original YOLOv9s, respectively, and the mAP of defects of each category is significantly improved, which proves the effectiveness of this paper′s algorithm.

    参考文献
    相似文献
    引证文献
引用本文

陈枫赟,李鹏,张翔凯,于涛,余珺泽.基于ARS-YOLOv9s的PCB缺陷检测算法[J].电子测量技术,2025,48(14):86-95

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码