改进YOLO11的PCB表面缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

华中科技大学电气与电子工程学院 武汉 430074

作者简介:

通讯作者:

中图分类号:

TP391.4;TN791

基金项目:

教育部 2020 年第二批新工科研究与实践项目(E-NYDQHGC20202219)资助


Improved PCB surface defect detection method based on YOLO11
Author:
Affiliation:

School of Electrical & Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对PCB表面缺陷检测准确率不足,无法充分平衡模型检测准确性与实时性,难以满足现代电子制造系统稳定运行要求的问题,提出了一种改进YOLO11的PCB表面缺陷检测方法HDH-YOLO。该方法通过采用优化的HGNetV2替换原YOLO11的骨干网络,实现模型的轻量化;借鉴Dynamicconv的思想对HGBlock进行改进,用改进的Dynamic_HGBlock替换HGNetV2网络中后四层HGBlock,在不增加过多计算量的前提下引入更多网络参数,增强网络对泛化特征的学习能力,进而提高检测精度;在骨干网络末端添加DSM注意力机制层,通过放大关键区域的空间域和频率域响应提升模型的小目标检测能力。在PKU-Market PCB和DeepPCB数据集进行对比实验和消融实验,实验结果表明,提出的HDH-YOLO模型较基线YOLO11n模型参数量降低6.20%,计算量降低12.70%,mAP50和mAP50.95分别提升2.6%和2.3%,较好地平衡了轻量化和检测精度,在现代电子制造系统中具有高可靠性和高实用性。

    Abstract:

    Aiming at the problem that the detection accuracy of PCB surface defects is insufficient and it is difficult to balance the detection accuracy and real-time performance of the model, which cannot meet the stable operation requirements of modern electronic manufacturing systems, an improved PCB surface defect detection method named HDH.YOLO is proposed. This method replaces the backbone network of the original YOLO11 with an optimized HGNetV2 to achieve model lightweighting. It also improves the HGBlock by referring to the idea of Dynamicconv, and replaces the last four HGBlocks in the HGNetV2 network with the improved Dynamic_HGBlock. This approach introduces more network parameters without significantly increasing the computational load, thereby enhancing the network′s ability to learn generalized features and improving detection accuracy. In addition, a DSM attention mechanism layer is added at the end of the backbone network to enhance the model′s feature extraction capability by amplifying the spatial and frequency domain responses of key regions. Comparative experiments and ablation studies were conducted on the PKU-Market PCB and DeepPCB datasets. The results show that, compared with the baseline YOLO11n model, the proposed HDH-YOLO model reduces the number of parameters by 6.20% and the computational load by 12.70%, while increasing the mAP50 and mAP50.95 by 2.6% and 2.3%, respectively. HDH.YOLO thus achieves a better balance between lightweighting and detection accuracy and demonstrates high reliability and practicality in modern electronic manufacturing systems.

    参考文献
    相似文献
    引证文献
引用本文

吴葛,朱宇凡,贾泽宁.改进YOLO11的PCB表面缺陷检测方法[J].电子测量技术,2025,48(14):136-145

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码