基于ResNet-LSTM的心电信号特征点检测优化算法研究
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学机电工程学院 北京 100192;2.国家康复辅具研究中心,北京市老年功能障碍 康复辅助技术重点实验室,民政部神经功能信息与康复工程重点实验室 北京 100176; 3.中国中医科学院西苑医院国家中医心血管病医学研究中心 北京 100091

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

民政部重点实验室及工程技术研究中心开放课题(102118170090010009004)、国家自然科学基金(52005045)项目资助


Research on optimization algorithm for ECG feature point detection based on ResNet-LSTM network
Author:
Affiliation:

1.School of Electromechanical Engineering, Beijing Information Science and Technology University,Beijing 100192,China; 2.National Research Center for Rehabilitation Technical Aids, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing 100176,China;3.The National Research Center for Traditional Chinese Medicine Cardiovascular Diseases at Xiyuan Hospital,China Academy of Chinese Medical Sciences,Beijing 100091,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    心电信号特征点的精确检测对医疗康复辅助设备、心脏监护系统及心脏病研究至关重要。针对传统方法存在的漏检、误检问题,本文提出一种基于ResNet-LSTM-差分阈值的心电信号特征点检测优化算法。本研究利用自适应阈值对心电信号特征点进行标记,然后采用ResNet-LSTM模型对标注有特征点的心电信号数据进行训练,最后结合差分阈值法在决策阶段并行检测心电信号r波,当神经网络模型或阈值法中的任一方法成功检测到R波时,该检测即为真正例。实验结果表明,该方法在MIT-BIH数据库上的R波检测准确率达到99.4%,相较于单一阈值法和传统深度学习方法,提高了检测精度和计算效率。提出的ResNet-LSTM-差分阈值心电信号特征点检测方法有效提高了心电信号特征点检测的准确率和鲁棒性,在面对复杂、多变的心电信号时,实现了高效、精准、实时的特征点检测,为各类医疗设备与医护系统提供了广泛的应用前景。

    Abstract:

    Accurate detection of characteristic points in electrocardiogram (ECG) signals is crucial for medical rehabilitation assistance devices, cardiac monitoring systems, and cardiovascular disease research. To address the issues of missed detections and false alarms in traditional methods, this paper proposes an optimized algorithm for ECG characteristic point detection based on ResNet-LSTM-Differential Threshold. In this study, adaptive thresholding is utilized to label the characteristic points of ECG signals, followed by training the ResNet-LSTM model on the annotated ECG signal data. Finally, the differential threshold method is integrated in the decision-making phase to detect R-waves in parallel. A detection is considered a true positive if either the neural network model or the threshold method successfully identifies an R-wave. Experimental results demonstrate that the proposed method achieves an R-wave detection accuracy of 99.4% on the MIT-BIH database, outperforming both single threshold methods and traditional deep learning approaches in terms of detection precision and computational efficiency. The proposed ResNet-LSTM-Differential Threshold method for ECG characteristic point detection effectively enhances the accuracy and robustness of detection. It enables efficient, precise, and real-time detection of characteristic points even when dealing with complex and variable ECG signals, offering broad application prospects for various medical devices and healthcare systems.

    参考文献
    相似文献
    引证文献
引用本文

苏鹏,王书涵,潘国新,张中钰,王培利.基于ResNet-LSTM的心电信号特征点检测优化算法研究[J].电子测量技术,2025,48(16):29-39

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告