自适应VMD与多头注意力PCNN融合的小电流接地故障选线方法
DOI:
CSTR:
作者:
作者单位:

1.内蒙古工业大学电力学院 呼和浩特 010000; 2.上海交通大学电子信息与电气工程学院 上海 200240

作者简介:

通讯作者:

中图分类号:

TM771; TN876.3

基金项目:

国网上海市电力公司科技项目(SGSHFX00ZSJS2312630)资助


Low current grounding fault line selection method based on the fusion of adaptive VMD and multi-head attention PCNN
Author:
Affiliation:

1.School of Electric Power, Inner Mongolia University of Technology,Huhhot 010000, China; 2.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统小电流接地系统单相接地故障选线方法,通常采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。基于上述问题,本研究提出了一种基于优化VMD及双通道PCNN-MATT的配网小电流接地系统单相接地故障选线方法:采用霜冰算法对VMD的分解层数与惩罚因子进行寻优,利用模糊熵算法选取模糊熵值最小的IMFs分量作为降噪输出信号;运用格拉姆角场算法将降噪后的信号变换为二维空间域图像,构建故障数据库;将GASF、GADF图像作为双通道神经网络的输入,用PCNN-MATT提取和学习图像所蕴含的故障特征,并进行故障线路的选取。为验证所提方法的有效性,本研究使用MATLAB/Simulink和配网RTLAB闭环仿真平台,在加入噪声的前提下,将所提模型与3种选线模型相比较。实验结果表明本研究算法准确率高达99.4%,在不同噪声条件下能够维持95%以上的准确率,优于其它3种选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。

    Abstract:

    The traditional method of line selection for single-phase grounding fault in small current grounding system usually adopts the line selection model based on one-dimensional signal, which has some problems such as low line selection accuracy and weak noise resistance. Based on the above problems, this paper proposes a line selection method for single-phase grounding fault of distribution network small current grounding system based on optimized VMD and dual-channel CNN-MATT: frost and ice algorithm is used to optimize the decomposition layer number and penalty factor of VMD, and fuzzy entropy algorithm is used to select the IMFs component with minimum fuzzy entropy as the noise reduction output signal. Gram-angle field algorithm is used to transform the denoised signal into two-dimensional spatial domain image, and the fault database is constructed. The GASF and GADF images are taken as the input of dual-channel neural network, and the fault features contained in the images are extracted and learned by CNN-MATT, and the fault lines are selected. In order to verify the effectiveness of the proposed method, MATLAB/Simulink and RTLAB closed-loop simulation platform are used in this paper, and the proposed model is compared with three kinds of line selection models under the premise of adding noise. The experimental results show that the accuracy rate of the proposed algorithm is as high as 99.4%, and it can maintain an accuracy of more than 95% under different noise conditions, which is superior to the other three line selection models, and overcomes the problems of low accuracy and poor noise resistance of traditional fault line selection methods.

    参考文献
    相似文献
    引证文献
引用本文

韩冠行,韩如月,贾雅君,江俊杰.自适应VMD与多头注意力PCNN融合的小电流接地故障选线方法[J].电子测量技术,2025,48(21):77-86

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码