基于YOLOX-GED的路面病害检测算法
DOI:
CSTR:
作者:
作者单位:

1.南昌工学院信息与人工智能学院 南昌 330108; 2.南昌大学信息工程学院 南昌 330036

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

国家自然科学基金(72164027,72464023)项目资助


Pavement disease detection algorithm based on YOLOX-GED
Author:
Affiliation:

1.School of Information and Artificial Intelligence, Nanchang Instute of Science & Technology,Nanchang 330108, China; 2.School of Information Engineering, Nanchang University,Nanchang 330036, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    路面病害检测在道路养护中尤为重要,针对路面病害检测存在路面图像背景复杂、病害尺度差异大等问题,提出了YOLOX-GED算法,该算法在YOLOX-s算法的基础上,首先设计CSP_Ghost模块替换CSPLayer模块,减少网络参数量的同时加强了网络的特征提取能力;其次,引入ECA注意力机制,加强了网络的特征融合效果,提高了网络对路面病害的识别精度;最后,设计DSPPF空间金字塔结构,增加特征的多样性,加强了对多尺度上下文信息的提取融合。在RDD2020数据集上进行实验,结果表明,YOLOX-GED算法的mAP比YOLOX-s算法高出5.32%,同时模型参数量减少了7.9%,更易部署到移动设备。

    Abstract:

    Pavement disease detection is particularly important in road maintenance, and the YOLOX-GED algorithm is proposed for the problems of complex background of pavement image and large difference of disease scale in pavement disease detection. On the basis of YOLOX-s algorithm, the algorithm firstly designs CSP_Ghost module to replace CSPLayer module, which reduces the number of network parameters and at the same time strengthens the feature extraction ability of the network; secondly, introduces the ECA attention mechanism, which strengthens the feature fusion effect of the network, and improves the recognition accuracy of the network on the pavement lesions; lastly, designs the pyramid structure of DSPPF space, which increases the diversity of features and strengthens the recognition accuracy of the network on the pavement lesions. that increases the diversity of features and strengthens the extraction and fusion of multi-scale contextual information. Experiments on the RDD2020 dataset show that the mAP of the YOLOX-GED algorithm is 5.32% higher than that of the YOLOX-s algorithm, and at the same time, the amount of model parameters is reduced by 7.9%, which makes it easier to deploy to mobile devices.

    参考文献
    相似文献
    引证文献
引用本文

封淑玲,王琪,吕成伊.基于YOLOX-GED的路面病害检测算法[J].电子测量技术,2025,48(23):215-223

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-23
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告
×
《电子测量技术》
关于防范虚假编辑部邮件的郑重公告