基于深度学习的癫痫异常信号检测和分类模型
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院 昆明 650504;2.昆明理工大学云南省人工智能重点实验室 昆明 650504

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.7

基金项目:

云南省科技厅科技计划项目 (202102AA100021)资助


Abnormal epileptic signal detection and classification model based on deep learning
Author:
Affiliation:

1.School of Information Engineering and Automation, Kunming University of Science and Technology,Kunming 650504, China; 2.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology,Kunming 650504, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。

    Abstract:

    Epilepsy is a common neurological disease, and its diagnosis mainly relies on the analysis of EEG signals. In recent years, deep learning-based methods have been widely used in epilepsy detection, but these methods usually rely on a single feature extraction technique and mostly ignore the spatial domain features of EEG signals. In order to capture the spatial domain features of EEG signals, researchers have tried to introduce the graph representation of EEG and combine it with GNN model for modeling. However, the graph representation of existing methods usually requires each vertex to traverse all other vertices to build the graph structure, resulting in high time complexity and difficulty in meeting the needs of clinical real-time diagnosis. In response to the above challenges, this study proposed CNG structure, which reduces redundant edges by dynamically selecting neighbor nodes, significantly reducing the time complexity while retaining key information. On this basis, we further proposed a dual-view input-based automatic epilepsy detection and classification framework, DV-SeizureNet. This framework can simultaneously learn the time, frequency, and spatial domain features of EEG signals to achieve epileptic abnormality detection and seizure classification. Experiments on the TUSZ dataset show that DV-SeizureNet achieves an accuracy of 91.4% in epilepsy detection tasks, which is 2.1% better than the existing state-of-the-art methods. In the classification task, the average classification accuracy of the model for four types of epileptic seizures is 82.8%, and the F1-score is 81.2%. DV-SeizureNet uses a dual-view learning framework to comprehensively extract and fuse the spatiotemporal and frequency domain features of EEG signals, and performs well in epilepsy abnormality detection and seizure classification tasks, providing a reliable auxiliary tool for clinical diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

王剑,成婷,宋政阳,张一丁.基于深度学习的癫痫异常信号检测和分类模型[J].电子测量技术,2025,48(17):113-124

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告