改进的YOLOv11智能车辆动态环境目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.山东理工大学交通与车辆工程学院 淄博 255000; 2.山东省新能源车辆集成设计与智能化重点实验室 淄博 255000

作者简介:

通讯作者:

中图分类号:

TP391.41;TN914

基金项目:

国家自然科学基金(52102465)、国家自然科学基金面上项目(52475269)、山东省自然科学基金面上项目(ZR2024ME179,ZR2022MF230)、山东重大科技创新工程项目(2023CXGC010111)、山东省青年基金(ZR2021QF039)、山东省中小企业创新能力提升工程项目(2022TSGC2277)资助


Improved YOLOv11 intelligent vehicle dynamic environment object detection algorithm
Author:
Affiliation:

1.School of Transportation and Vehicle Engineering, Shandong University of Technology,Zibo 255000, China; 2.Key Laboratory of Integrated Design and Intelligence of New Energy Vehicles in Shandong Province,Zibo 255000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能车辆复杂动态场景下车辆小目标和遮挡目标存在的检测困难及定位不准问题,提出了一种改进的YOLOv11的实时目标检测算法。首先,针对主干网络中因池化层特征丢失导致的小目识别困难的问题,在AIFI基础上提出了DSEAIFI替换了主干网络中的池化层。其次,为了改善颈部网络对特征的利用和融合能力,同时提高对遮挡目标的检测能力提出了MFFNeck网络,提高了模型对上下文特征的融合能力和适应性。最后,为进一步提高网络对复杂动态环境的适应能力,并且突出高级特征在特征图中的重要级别,在头部网络中融合了针对检测头设计LAAFPN网络。为验证所提出的算法性能,进行了仿真与实车实验,仿真结果表明在KITTI数据集上改进的算法mAP@0.5和mAP@0.5:0.95分别为91.1%和70.1%,与基础模型相比分别提高了2.1%和3.8%。实车实验结果表明所提算法的平均检测精度为92.7%,相较于基础模型提升了4.3%,并且具有较好的实时性。

    Abstract:

    An improved YOLOv11 real-time object detection algorithm is proposed to address the detection difficulties and inaccurate positioning of small and occluded targets in complex dynamic scenarios of intelligent vehicles. Firstly, in response to the difficulty of small object recognition caused by the loss of pooling layer features in the backbone network, DSEAIFI was proposed on the basis of AIFI to replace the pooling layer in the backbone network. Secondly, in order to improve the neck network′s ability to utilize and fuse features, as well as enhance its ability to detect occluded targets, the MFFNeck network was proposed, which improved the model′s ability and adaptability to fuse contextual features. Finally, in order to further improve the adaptability of the network to complex dynamic environments and highlight the importance level of advanced features in the feature map, a LAAFPN network designed for the detection head was integrated into the head network. To verify the performance of the proposed algorithm, simulations and real vehicle experiments were conducted, and the simulation results showed that the improved algorithm was effective on the KITTI dataset mAP@0.5 and mAP@0.5 0.95 is 91.1% and 70.1% respectively, which is an improvement of 2.1% and 3.8% compared to the basic model. The actual vehicle experiment results show that the average detection accuracy of the proposed algorithm is 92.7%, which is 4.3% higher than the basic model and has good real-time performance.

    参考文献
    相似文献
    引证文献
引用本文

于承峄,高松,王鹏伟,孙宾宾,张榕.改进的YOLOv11智能车辆动态环境目标检测算法[J].电子测量技术,2025,48(21):55-66

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码