基于改进YOLOv8模型的PCB缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学电气与电子工程学院 武汉 430068; 2.美国南卡罗来纳大学计算机科学与工程系 南开罗来纳州 29201

作者简介:

通讯作者:

中图分类号:

TP391.4; TN41

基金项目:

国家自然科学基金(62202148)、国家留学基金(201808420418)、湖北省自然科学基金(2019CFB530)、湖北省科技厅重大专项(2019ZYYD020)项目资助


PCB defect detection model based on improved YOLOv8 algorithm
Author:
Affiliation:

1.School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China; 2.Department of Computer Science and Engineering, University of South Carolina, South Carolina 29201, USA

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有PCB缺陷检测方法存在漏检率高、泛化性差且难以兼顾检测精度和速度的平衡问题,本文提出了一种基于改进YOLOv8n模型的PCB缺陷检测算法YOLOv8-CSM。首先,在主干网络末尾添加一个CoordAtt注意力模块,抑制复杂背景对PCB缺陷区域的影响以提高模型的检测精度;其次,在检测头中引入3个SEAM模块扩大模型感受野,提高模型对微小缺陷的识别的能力以降低漏检率;最后,使用MPDIoU替代传统的CIoU损失,优化边界框的回归效果并提高模型的收敛速度。实验数据表明,YOLOv8-CSM能更好的兼顾检测精度与速度的平衡且泛化性更强,与基础模型相比Recall、Precision、mAP50、FPS分别提高了4.3%、1.8%、2.7%、42.76,显著提高了模型在PCB缺陷检测任务中的性能。

    Abstract:

    To address the existing PCB defect detection methods with high miss detection rate,poor generalisation and difficulty in balancing detection accuracy and speed, this paper proposes a PCB defect detection algorithm YOLOv8-CSM based on the improved YOLOv8n model. Firstly, a CoordAttention module is added at the end of the backbone network, which suppresses the influence of the complex background on the defective region of the PCB in order to improve the model′s detection accuracy; second, three SEAM modules are referenced in the detection header to expand the model receptive field and improve the model′s ability to identify small defects to reduce the miss detection rate; finally, MPDIoU is used to replace the traditional CIoU loss to optimise the regression effect of the bounding box and improve the convergence speed of the model. The experimental data show that YOLOv8-CSM can better balance detection accuracy and speed, and it is more generalizable. Compared with the base model, the Recall, Precision, mAP50 and FPS are improved by 4.3%, 1.8%, 2.7% and 42.76, respectively, which significantly enhances the model′s performance in PCB defect detection tasks.

    参考文献
    相似文献
    引证文献
引用本文

熊炜,黄玉谦,彭鑫旭.基于改进YOLOv8模型的PCB缺陷检测算法[J].电子测量技术,2025,48(18):159-167

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告