轻量级无监督深度学习水下图像拼接算法
DOI:
CSTR:
作者:
作者单位:

1.中北大学仪器与电子学院 太原 030051; 2.中北大学电子测量技术国家重点实验室 太原 030051; 3. 中北大学半导体与物理学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TP391;TN0

基金项目:

国家国防基金(2023-JCJQ-JJ-0353)项目资助


Lightweight unsupervised deep learning algorithm for underwater image stitching
Author:
Affiliation:

1.School of Instrumentation and Electronics, North Central University,Taiyuan 030051, China; 2.State Key Laboratory of Electronic Test Technology, North Central University,Taiyuan 030051, China; 3.School of Semiconductors and Physics, North Central University,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统拼接方法在复杂场景下表现不佳,且有监督方法标注数据困难,现有的无监督图像拼接方法模型参数大,拼接时间长。因此,提出了一种轻量级无监督深度学习的图像拼接框架,分为无监督图像变形网络和无监督图像融合网络两个阶段。在图像变形网络中,使用MobileNetV2作为网络主干,结合ECA模块得到图像的变形信息。图像融合模块使用UNeXt作为主干网络得到图像重叠区域的接缝线进行无缝拼接,通过添加AG模块以及改进Tokenized MLP模块来提高精度。此外,由于缺乏水下图像拼接的数据集,本文还构建了真实场景下的无监督水下图像拼接的数据集,并在该数据集以及公开数据集UDIS-D上比较了SIFT+Ransac、ORB+Ransac、UDIS算法和UDIS++算法,实验结果表明,本文算法在保证拼接精确度的同时将模型的参数量下降了74%,拼接速度提升了46%。

    Abstract:

    Traditional stitching methods perform poorly in complex scenes, and supervised methods face challenges due to the difficulty of annotating data. Existing unsupervised image stitching methods suffer from large model parameters and long stitching times. Therefore, a lightweight unsupervised deep learning-based image stitching framework is proposed, which consists of two stages: an unsupervised image deformation network and an unsupervised image fusion network. In the image deformation network, MobileNetV2 is used as the backbone, combined with the ECA attention mechanism module to obtain image deformation information. The image fusion module employs UNeXt as the backbone network to generate seamless stitching by identifying the seam lines in the overlapping regions of the images. The accuracy is improved by incorporating the AG module and enhancing the tokenized MLP module. Additionally, due to the lack of datasets for underwater image stitching, a real-world unsupervised underwater image stitching dataset is constructed. Comparative experiments are conducted on this dataset and the publicly available UDIS-D dataset, evaluating SIFT+Ransac, ORB+Ransac, UDIS, and UDIS++ algorithms. The experimental results demonstrate that the proposed algorithm reduces the model parameters by 74% and improves stitching speed by 46% while maintaining stitching accuracy.

    参考文献
    相似文献
    引证文献
引用本文

胡帅晨,张鹏,崔敏.轻量级无监督深度学习水下图像拼接算法[J].电子测量技术,2025,48(19):161-167

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码