基于特征增强的行人重识别算法
DOI:
CSTR:
作者:
作者单位:

沈阳航空航天大学自动化学院 沈阳 110136

作者简介:

通讯作者:

中图分类号:

TN391

基金项目:

辽宁省教育厅重点攻关项目(LJKZZ20220033)资助


Feature-enhanced based pedestrian re-identification algorithm
Author:
Affiliation:

School of Automation,Shenyang Aerospace University,Shenyang 110136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有行人重识别算法过于依赖卷积神经网络作为主干网络,导致其过度关注具有显著特征的区域,而忽略了广义前景特征,进而全局特征信息不够丰富,对细微的判别特征关注度较差的问题,提出了一种基于特征增强的行人重识别算法。通过位置编码和多层多头注意力结构,更好地利用空间上下文信息,增强对空间相对位置的理解,有效捕捉空间结构信息,从而提升特征的表征能力,提升全局提取能力。局部分支利用空间向量关联的特征矩阵优化空间注意力,捕捉更加紧凑的广义外观特征,并通过建模不同通道间的关系加强通道维度特征表达,突出显著特征信息,从而增强判别性特征的关注度。最后,采用softmax损失、三元损失和中心损失在Market-1501和DukeMTMC-ReID数据集上进行了模型训练,实验结果充分证明了所提出算法的有效性和性能优势。

    Abstract:

    Existing pedestrian re-identification algorithms heavily rely on convolutional neural networks as the backbone, which often leads to an overemphasis on regions with prominent features while neglecting broader foreground features. This results in insufficiently rich global feature representations and inadequate attention to subtle discriminative features. To address these issues, we propose a feature-enhanced pedestrian ReID algorithm. The global branch utilizes position encoding and a multi-layer, multi-head attention structure to better leverage spatial context information, enhance the understanding of relative spatial positions, and effectively capture spatial structural information, thereby improving feature representation and global feature extraction capability. The local branch optimizes spatial attention using feature matrices associated with spatial vectors, enabling the capture of more compact general appearance features. Furthermore, by modeling the relationships between different channels, it strengthens feature expression in the channel dimension, highlighting distinctive features and improving the attention to discriminative characteristics. Finally, the model is trained using softmax loss, triplet loss, and center loss on the Market-1501 and DukeMTMC-ReID datasets. Experimental results demonstrate the effectiveness and superior performance of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

姬晓飞,孙英超,宋京浩.基于特征增强的行人重识别算法[J].电子测量技术,2025,48(22):198-205

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告