改进YOLO11的多尺度上下文增强注意力车辆检测模型
DOI:
CSTR:
作者:
作者单位:

贵州大学计算机科学与技术学院公共大数据国家重点实验室 贵阳 550025

作者简介:

通讯作者:

中图分类号:

TP391.4;TN98

基金项目:

贵州省科技支撑计划(黔科合支撑[2023]一般430)项目资助


Multi-scale context-enhanced attention vehicle detection model based on improved YOLO11
Author:
Affiliation:

State Key Laboratory of Public Big Data, College of Computer Science and Technology,Guizhou University, Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高高性能多尺度目标检测,特别是小目标检测的精度,以减少交通事故的发生概率。本研究提出了一种改进YOLO11模型的多尺度上下文增强注意力机制的汽车检测方法。首先,在主干网络中设计并引入了RPCSPELAN5结构替换C3k2模块,提升特征提取能力和信息聚合。其次,在颈部网络中创建并新增DSM模块,该模块通过动态上采样器和无参数注意力机制,增强小目标的特征融合。最后,进一步改进颈部网络,采用了基于Haar小波的下采样模块,提升语义分割表现和上下文连续性。在VOC2012和COCO数据集上的实验表明,所提出的算法在多个评估指标上均取得了显著的提升。VOC2012数据集上的P、R、mAP50和mAP50.95分别提高了0.2%、5.3%、3.4%和4.2%,而COCO数据集上的提升幅度分别为7.7%、6.0%、8.7%和6.5%。本研究提出的算法在多尺度目标检测,特别是小目标检测精度上表现出优越性,有效提高了车辆检测精度,有助于降低交通事故发生的概率。

    Abstract:

    To improve high-performance multi-scale object detection, particularly the accuracy of small object detection, and reduce the probability of traffic accidents, this study proposes an enhanced YOLO11 model with a multi-scale context-enhanced attention mechanism for vehicle detection. Firstly, the RPCSPELAN5 structure is designed and introduced in the backbone network to replace the C3k2 module, enhancing feature extraction capability and information aggregation. Secondly, a DSM module is created and added to the neck network, which incorporates a dynamic upsampling mechanism and a simple, parameter-free attention mechanism to improve feature fusion for small objects. Finally, the neck network is further improved by adopting a Haar wavelet-based downsampling module, which enhances semantic segmentation performance and contextual continuity. Experiments on the VOC2012 and COCO datasets demonstrate significant improvements across multiple evaluation metrics. On the VOC2012 dataset, the improvements in P, R, mAP50, and mAP50.95 were 0.2%, 5.3%, 3.4% and 4.2%, respectively. On the COCO dataset, the improvements were 7.7%, 6.0%, 8.7% and 6.5%, respectively. The proposed algorithm exhibits superior performance in multi-scale object detection, particularly in small object detection accuracy, effectively enhancing vehicle detection precision and contributing to the reduction of traffic accidents.

    参考文献
    相似文献
    引证文献
引用本文

刘炜,皮建勇,胡倩,胡伟超.改进YOLO11的多尺度上下文增强注意力车辆检测模型[J].电子测量技术,2025,48(21):177-188

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码