基于WTT-iTransformer时序预测的容器群伸缩策略研究
DOI:
CSTR:
作者:
作者单位:

上海大学特种光纤与光接入网重点实验室 上海 200444

作者简介:

通讯作者:

中图分类号:

TN915.5

基金项目:

国家重点研发计划(2021YFB2900800)、高等学校学科创新引智计划(111项目)(D20031)资助


Research on container cluster scaling strategies based on WTT-iTransformer time series prediction
Author:
Affiliation:

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University,Shanghai 200444, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTransformer不仅在长期序列预测表现优异,还可通过变量序列作为token嵌入获取了多变量间的关联性。本文通过增加了小波变换卷积层WTConv2d和多尺度时间卷积网络的WTT-iTransformer模型可以更精确地从时、频域两方面提取资源时间序列的长期特征与依赖关系,更符合容器使用特征的预测。基于该模型的负载变化预测,能够实现高、低流量发生的初期进行快速扩缩容,以解决反应滞后和资源利用率低的问题。实验结果表明,WTT-iTransformer在训练过程中表现出更好的稳定性和更低的训练误差,能够较为准确地预测集群负载的变化趋势,改进的弹性伸缩策略与Kubernetes传统的HPA相比更加智能、稳定,在负载特征明显、突发性负载较多的场景展现出显著提升,具有广泛的应用潜力。

    Abstract:

    The default Horizontal Pod Autoscaler strategy in Kubernetes has limitations due to its inherent response mechanism, leading to scaling delays. To improve resource response performance and resource utilization, this paper introduces an elastic scaling strategy based on time-series resource load prediction. The proposed prediction model, WTT-iTransformer, is specifically designed to forecast cluster resources. It is known that iTransformer excels in long-term sequence prediction and can capture the correlations between multiple variables by embedding variable sequences as tokens. By adding a Wavelet Transform Convolutional layer and integrating a Multi-Scale Temporal Convolutional Network, the WTT-iTransformer model is constructed, enabling more precise extraction of long-term features and dependencies in resource time-series from both the time and frequency domains, which aligns better with the prediction of container usage characteristics. Based on the load variation prediction of this model, rapid scaling can be implemented at the early stages of high and low traffic occurrences, addressing the issues of delayed responses and low resource utilization. Experimental results show that the WTT-iTransformer demonstrates better stability and lower training error during training, accurately predicting cluster load trends. The improved elastic scaling strategy, compared to the traditional HPA in Kubernetes, is more intelligent and stable, showing significant improvements in scenarios with notable load characteristics and frequent burst traffic, thus holding broad application potential.

    参考文献
    相似文献
    引证文献
引用本文

陈奇超,叶楠,曹炳尧.基于WTT-iTransformer时序预测的容器群伸缩策略研究[J].电子测量技术,2025,48(12):88-98

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-28
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告