基于参数优化和QR的短期风电功率预测
DOI:
CSTR:
作者:
作者单位:

贵州大学电气工程学院 贵阳 550025

作者简介:

通讯作者:

中图分类号:

TN91;TM614

基金项目:

国家自然科学基金(61640014,61963009)、贵州省科技支撑项目(黔科合[2022]一般017,黔科合ZK[2022]135)资助


Short-term wind power prediction based on parameter optimization and QR
Author:
Affiliation:

School of Electrical Engineering, Guizhou University,Guiyang 550025,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高波动场景下风电功率预测模型难以兼顾点值精度与区间可靠性的问题,提出一种融合参数优化与非线性分位数回归的混合预测模型。首先,构建基于双重注意力机制的TCNGRUDA组合预测模型,利用特征注意力挖掘多维气象特征的空间相关性,并结合多头注意力捕捉功率序列的时序依赖性;其次,提出改进鹭鹰优化算法(ISBOA)实现组合模型的4个超参数的智能寻优,该算法通过融合佳点集和量子计算初始化、分段非线性权重、北方苍鹰优化算法(NGO)的方向因子和柯西分布策略显著提升收敛性能;最后,构建基于多头注意力的非线性分位数回归模型,通过自适应损失函数动态调节不同分位数下的特征权重,显著提升了条件分位数估计的准确性。实例结果表明,在点值预测方面,所提模型较TCN-GRU的MAE和RMSE分别降低30.27%和27.28%;在区间预测方面,95%置信度下的PICP提升3.97%,PINAW下降20.76%。研究表明,所提模型有效解决了风电功率点值估计与区间估计的协同优化难题,不仅提高了极端天气下的预测鲁棒性,更为电网的日前调度与实时控制提供多维决策支持。

    Abstract:

    Aiming at the problem that wind power prediction models under high-fluctuation scenarios struggle to balance point-value accuracy and interval reliability, a hybrid prediction model integrating parameter optimization and nonlinear quantile regression is proposed. First, a combined TCN-GRU-DA prediction model based on a dual attention mechanism is constructed, using feature attention to mine the spatial correlation of multidimensional meteorological features and it with combining multi-head attention to capture the temporal dependence of power sequences. Second, the improve secretary bird optimization algorithm is proposed to realize the intelligent optimization of the four hyper-parameters of the combined model. This algorithm significantly enhances convergence performance by integrating good point set theory and quantum computing initialization, time-segmented nonlinear weighting, the directional search mechanism of the northern goshawk optimization algorithm, and a Cauchy distribution strategy to enhance global search capability. Finally, a multi-head attention-based nonlinear quantile regression model is developed, which dynamically adjusts feature weights under different quantiles through an adaptive loss function, thereby improving the accuracy of conditional quantile estimation. Experimental results demonstrate that, for point prediction, the proposed model reduces MAE and RMSE by 33.33% and 31.93%, respectively, compared to TCN-GRU. For interval prediction, at a 95% confidence level, the PICP improves by 3.97% and PINAW decreases by 20.76%. The study confirms that the proposed model effectively addresses the synergistic optimization of point estimation and interval estimation for wind power prediction. It not only enhances prediction robustness under extreme weather but also provides multi-dimensional decision support for day-ahead scheduling and real-time control in power grids.

    参考文献
    相似文献
    引证文献
引用本文

蒲晓云,杨靖,杨兴,宁媛.基于参数优化和QR的短期风电功率预测[J].电子测量技术,2025,48(16):88-98

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告