基于改进灰狼算法优化BP神经网络的RSS指纹定位
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学物理与电子信息工程学院 桂林 541006;2.桂林理工大学计算机科学与工程学院 桂林 541006; 3.桂林理工大学广西嵌入式技术与智能系统重点实验室 桂林 541006

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金(62362017)项目资助


The RSS fingerprint positioning of BP neural network was optimized based on the improved gray wolf algorithm
Author:
Affiliation:

1.School of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541006, China; 2.School of Computer Science and Engineering, Guilin University of Technology, Guilin 541006, China; 3.Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin 541006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO)算法与反向传播神经网络(BPNN)结合的RSSI测距算法。与遗传算法(GA)、粒子群算法(PSO)和经典灰狼优化算法(GWO)相比,改进的GWO算法在定位精度和全局搜索能力方面具有显著优势。通过实验,本文提出的IGWO算法在均方根误差RMSE上相比GWO算法、GA算法、PSO算法分别减少了21.3%、15.7%、14.6%,IGWO算法表现出了较好的定位性能,在精度和性能上均优于传统方法。

    Abstract:

    Indoor positioning technology, especially the Received Signal Strength Index(RSSI)-based fingerprinting positioning method, has received extensive attention due to its low cost, wide device support, easy deployment, and low computational overhead. In order to enhance the mapping relationship between RSSI and the actual physical distance and improve the ranging accuracy, this paper proposes an RSSI ranging algorithm based on Improved Grey Wolf Optimization(IGWO) algorithm and Back Propagation Neural Network(BPNN). Compared with Genetic Algorithm(GA), Particle Swarm Optimization(PSO) and classical Grey Wolf Optimization algorithm(GWO), the improved GWO algorithm has significant advantages in positioning accuracy and global search ability. Through experiments, the root mean square error(RMSE) of IGWO algorithm is reduced by 21.3%, 15.7%and 14.6%respectively compared with GWO algorithm, GA algorithm and PSO algorithm. IGWO algorithm shows better positioning performance, and is superior to the traditional methods in accuracy and performance.

    参考文献
    相似文献
    引证文献
引用本文

刘伟,李艾龙,李卓,王智豪.基于改进灰狼算法优化BP神经网络的RSS指纹定位[J].电子测量技术,2025,48(14):162-175

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码