通道与空间特征协同提取的抗噪手势识别方法
DOI:
CSTR:
作者:
作者单位:

山东中医药大学医学信息工程学院 济南 250355

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

国家自然科学基金面上项目(82174528)、山东省研究生精品和优质课程建设项目(SDYAL21054,SDYKC2023041)、山东中医药大学青年科研创新团队项目(校科字〔2024〕1号)、山东中医药大学科学研究基金面上项目(KYZK2024M14)资助


Noise-resistant gesture recognition method based on the collaborative extraction of channel and spatial features
Author:
Affiliation:

College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine,Jinan 250355, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    表面肌电信号作为肌肉活动的直接反映,能够有效捕捉肌肉收缩的模式和强度信息,因此在手势识别中被广泛应用。然而,其稀疏性、非线性和噪声干扰对特征提取提出了严峻挑战。为此,本文提出了RASTNet模型,以ResNet50为主干网络,将每层最后一个block中的3×3卷积替换为空洞空间金字塔池化模块,通过不同空洞率的空洞卷积捕获sEMG多尺度信息。然后在每一层的连接处加入STConv模块,该模块在SCConv模块的基础上创新性地融入了三重注意力机制,在提取精细化通道与空间特征后进一步强化三维特征融合。本研究分别在用4种方法进行数据增强的ninapro DB1和DB5数据集上进行实验。结果表明,RASTNet较原模型准确率平均提升了1.83%和1.57%。与ResNeXt、Swin Transformer、CnovNeXt等主流经典模型在拟真噪声下横向对比,其召回率、F1分数等指标均表现更优。并且在面对最新的无噪声闭源模型时仍保持领先,展现出在复杂手势识别任务中的抗噪性。此外,RASTNet在跨数据集的泛化性验证中表现出色,进一步增强了其在实际应用中的适用性和鲁棒性。

    Abstract:

    Surface electromyography directly reflects muscle activity, effectively capturing muscle contraction patterns and intensity, making it widely used in gesture recognition. However, it′s sparsity, non-linearity, and noise interference pose significant challenges for feature extraction. To address this, we propose the RASTNet model, using ResNet50 as the backbone and replacing the 3×3 convolution in each layer′s last block with an Atrous Spatial Pyramid Pooling module to capture multi-scale information via dilated convolutions. An STConv module, incorporating a triple attention mechanism into SCConv, is added to enhance the fusion of channel and spatial features. Experiments on the NinaPro DB1 and DB5 datasets, augmented with four methods, show that RASTNet improves accuracy by 1.83% and 1.57% on average. Compared with models like ResNeXt, Swin Transformer, and CnovNeXt under simulated noise, RASTNet outperforms in recall rate, F1 score, and other metrics. It also remains superior to the latest closed-source models without noise, demonstrating robustness and noise resistance in complex gesture recognition tasks. Additionally, RASTNet shows strong generalization across datasets, enhancing its real-world applicability and robustness.

    参考文献
    相似文献
    引证文献
引用本文

逯英航,仇大伟,刘静,李仝伟,王锡城.通道与空间特征协同提取的抗噪手势识别方法[J].电子测量技术,2025,48(21):15-30

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码