改进RT-DETR的密集行人检测算法
DOI:
CSTR:
作者:
作者单位:

陕西理工大学数学与计算机科学学院 汉中 723001

作者简介:

通讯作者:

中图分类号:

TP391.41;TN98

基金项目:

陕西省教育厅专项科研计划项目(23JK0363)、陕西省技术创新引导专项(2022YFBT-53-02)、陕西理工大学校企合作项目(H20240246)资助


Improvement of the dense pedestrian detection algorithm of RT-DETR
Author:
Affiliation:

School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对密集行人检测中因高遮挡和尺度变化较大而导致的易漏检和精度低问题,本文提出了一种高效的面向复杂场景密集行人检测的RTDETR改进算法RSHRTDETR。首先提出Regocn模块改进backbone,使用有限的普通卷积进行特征提取,随后进行线性变换操作,同时在在梯度流通分支上使用RepConv弥补舍弃残差块所带来的性能损失并增强特征提取和梯度流通的能力,在降低计算量和参数量的同时更好的对不同尺度的目标进行检测;其次在颈部引入160×160的S2检测层,通过优化特征融合过程,增强对小尺度行人目标的检测性能;最后采用Haar小波下采样模块(HWD),以扩大感受野、降低模型复杂度、提升对遮挡行人目标的检测精度。在CrowdHuman数据集做消融和对比实验,mAP50达到了86.6%,mAP50.95达到了57.8%,相比于原算法mAP50提高了1.2%, mAP50.95提高了1.9%,参数量下降40%。在Widerperson数据集上也优于RT-DETR算法。实验结果显示,RSH-RTDETR相比RTDETR-R18模型在降低参数量的同时提高了密集行人检测的准确率,也优于其他算法。本文改进算法在保证高精度的同时也实现了轻量化,在复杂场景下的密集行人检测任务中具有优异的性能。

    Abstract:

    To address the issues of missed detections and low accuracy caused by high occlusion and large scale variations in dense pedestrian detection, this paper proposes an efficient improved RT-DETR algorithm, RSH-RTDETR, for complex scene dense pedestrian detection. Firstly, the Regocn module is proposed to improve the backbone, using limited ordinary convolutions for feature extraction, followed by a linear transformation operation. Meanwhile, RepConv is used on the gradient flow branch to compensate for the performance loss caused by discarding residual blocks and enhance the feature extraction and gradient flow capabilities, achieving better detection of targets of different scales while reducing the computational load and parameter count. Secondly, a 160×160 S2 detection layer is introduced in the neck to enhance the detection ability of small-scale pedestrian targets during the feature fusion stage. Finally, the Haar wavelet downsampling module (HWD) is adopted to expand the receptive field, reduce model complexity, and improve the detection accuracy of occluded pedestrian targets. Ablation and comparison experiments were conducted on the CrowdHuman dataset, achieving an mAP50 of 86.6% and an mAP50.95 of 57.8%. Compared with the original algorithm, mAP50 was improved by 1.2% and mAP50.95 by 1.9%, with a 40% reduction in parameters. It also outperformed the RT-DETR algorithm on the Wider person dataset. Experimental results show that RSH-RTDETR improves the accuracy of dense pedestrian detection while reducing the parameter count compared to the RTDETR-R18 model, and outperforms other algorithms. The improved algorithm in this paper achieves lightweight while maintaining high accuracy, demonstrating excellent performance in dense pedestrian detection tasks in complex scenes.

    参考文献
    相似文献
    引证文献
引用本文

李青云,魏佳.改进RT-DETR的密集行人检测算法[J].电子测量技术,2025,48(21):148-156

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码