特征软融合与正负样本对比的弱监督目标定位
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院 焦作 454000;2.河南省煤矿装备智能检测与控制重点实验室 焦作 454003

作者简介:

通讯作者:

中图分类号:

TP391.4;TN791

基金项目:

河南理工大学博士基金(B2018-33)项目资助


Feature soft fusion and positive-negative sample contrast for weakly supervised object localization
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan University of Technology,Jiaozuo 454000, China;2.Henan Province Key Laboratory for Intelligent Detection and Control of Coal Mine Equipment,Jiaozuo 454003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对弱监督目标定位任务中,使用硬融合方式来融合深浅层特征导致网络过度关注区分性强区域或误将背景识别为目标的问题,本文提出了一种基于深浅层特征软融合和正负样本对比的弱监督目标定位方法。首先,提出的深浅层特征软融合策略通过设计前景生成器,分别从浅层特征和深层特征中生成前景预测图,然后采取反向监督操作,引导网络逐步学习多层细粒度特征,实现深浅层特征之间的相互优化。其次,本文基于对比学习思想提出了正负样本对比损失函数,通过构造正负样本,以引导网络在训练过程中更专注于前景区域,抑制背景噪声的干扰。本文在CUB-200-2011和ILSVRC-2012数据集上以验证本文方法的有效性,在两个数据集上的定位准确率分别达到了95.77%和72.90%。实验结果表明,本文方法在弱监督目标定位任务场景下的有效性和适用性。

    Abstract:

    In weakly supervised object localization tasks, using hard fusion to combine deep and shallow features can cause the network to overly focus on discriminative regions or mistakenly identify the background as the object. To address this issue, this paper proposes a weakly supervised object localization method based on soft fusion of deep and shallow features and positive-negative sample contrast. First, the proposed soft fusion strategy for shallow and deep features generates foreground prediction maps from both shallow and deep features by designing a foreground generator. Then, a reverse supervision operation is applied to guide the network in gradually learning multi-level fine-grained features, achieving mutual optimization between shallow and deep features. Second, based on the concept of contrastive learning, a positive and negative sample contrastive loss function is proposed. By constructing positive and negative samples, the network is guided to focus more on the foreground regions during training while suppressing background noise interference. The effectiveness of the proposed method is validated on the CUB-200-2011 and ILSVRC-2012 datasets, achieving localization accuracies of 95.77% and 72.90%, respectively. The experimental results demonstrate the effectiveness and applicability of the proposed method in weakly supervised object localization tasks.

    参考文献
    相似文献
    引证文献
引用本文

阮皓皓,李冰锋,李新伟,冀得魁.特征软融合与正负样本对比的弱监督目标定位[J].电子测量技术,2025,48(11):59-66

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码