基于深度学习的绿色柔性作业车间调度研究
DOI:
CSTR:
作者:
作者单位:

南京工程学院自动化学院 南京 211167

作者简介:

通讯作者:

中图分类号:

TP18;TN05

基金项目:

江苏省高校自然科学基金重大项目(23KJA510003)资助


Research on green flexible job shop scheduling based on deep learning
Author:
Affiliation:

School of Automation, Nanjing Institute of Technology,Nanjing 211167,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在绿色柔性作业车间(GFJSP)中,生产过程复杂导致生产效率低下,有效调度自动导引车(AGV)运输可以确保生产效率,又能保证成本控制。本文提出了多步深度多Q网络算法(multi-step D4QN)用于处理绿色车间与AGV调度。该方法首先通过马尔科夫决策过程(MDP)设计一个可以提供AGV与车间进行交互的数学框架,通过状态特征、动作空间、奖励函数实时调整决策从而实现作业与AGV调度。其次设计针对训练决策的算法进行优化改进,通过改进Q值的计算方式以及深度网络的训练得到合适解。最后进行两种验证算法学习性能的实验。第1种实验为单目标柔性作业车间调度,以最小化完工时间为目标,通过算法对Brandimarte算例和Kacem算例训练并将实验结果进行多算法对比,结果表明算法的平均时间比其他深度学习算法缩短了5.1~17.2 s,平均最优差比率减少了7.5%~21%,证明了算法的优越性和稳定性。第2种实验为多目标车间中AGV调度实验,以最小化完工时间和AGV能耗为目标,在MK01算例上计算AGV最优数量,实验表明4台AGV相较于其他数量标准化指数提升了3%~31.8%,证明其能够更好的实现车间降本增效的效果。

    Abstract:

    In the Green Flexible Job Shop Problem (GFJSP), the complexity of production processes leads to low efficiency. Effective scheduling of Automated Guided Vehicles (AGVs) for transportation can ensure both production efficiency and cost control. This paper proposes a Multi-step Deep Double Q-Network (D4QN) algorithm to address the scheduling of green workshops and AGVs. The method first designs a mathematical framework based on the Markov Decision Process (MDP) to enable interaction between AGVs and the workshop. By adjusting the decision-making in real time through state features, action space, and reward functions, the algorithm coordinates job and AGV scheduling. Next, the algorithm for training decision-making is optimized, improving the calculation of Q-values and deep network training to obtain suitable solutions. Finally, two validation experiments are conducted to evaluate the learning performance of the proposed algorithm. The first experiment involves single-objective flexible job shop scheduling with the objective of minimizing makespan. The algorithm is trained on the Brandimarte and Kacem benchmark problems, and the results are compared with those of other deep learning algorithms. The results show that the proposed algorithm reduced the average processing time by 5.1~17.2 s and decreased the average optimal gap ratio by 7.5%~21%, demonstrating the algorithm′s superiority and stability. The second experiment focuses on multi-objective AGV scheduling in a workshop, with the goals of minimizing makespan and AGV energy consumption. The optimal number of AGVs is calculated for the MK01 problem instance, with results showing that four AGVs achieved a 3%~31.8% improvement in the normalized index compared to other quantities, proving its effectiveness in reducing costs and improving efficiency in the workshop.

    参考文献
    相似文献
    引证文献
引用本文

彭国峰,胡彬,朱晓春.基于深度学习的绿色柔性作业车间调度研究[J].电子测量技术,2025,48(18):130-141

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告