多路径特征融合的YOLOv8航拍图像检测算法
DOI:
CSTR:
作者:
作者单位:

1.辽宁理工学院信息工程学院 锦州 121000;2.辽宁工程技术大学软件学院 葫芦岛 125105; 3.青海师范大学计算机学院 西宁 810008

作者简介:

通讯作者:

中图分类号:

TP391.4; TN919.8

基金项目:

国家自然科学基金(62173171)项目资助


YOLOv8 aerial image detection algorithm with multi-path feature fusion
Author:
Affiliation:

1.College of Information Engineering, Liaoning Institute of Science and Engineering,Jinzhou 121000, China; 2.College of Software, Liaoning Technical University,Huludao 125105, China; 3.College of Computer, Qinghai Normal University,Xining 810008, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机航拍图像中目标密集、背景复杂导致小目标检测精度较低的问题,提出了一种改进的航拍目标检测算法(MF-YOLO)。首先,增强YOLOv8的多路径特征融合能力,整合不同层次特征以保留浅层细节,提高小目标检测精度;其次,采用EMA注意力机制,提高目标区域识别率和目标框定位精度,有效区分目标与背景区域;然后,提出密集注意层(DAL),通过聚焦密集目标区域和抑制无关特征,提升算法对密集区域的特征提取能力;接着,设计挤压激励检测头,结合SE注意力机制抑制冗余特征,进一步提升小目标检测精度;最后,构建视频数据集并设计目标检测系统,以可视化算法检测效果。在VisDrone2019数据集上的实验验证表明,MF-YOLO的mAP0.5达到30.3%,较基线算法YOLOv8n提升3.4%。结果显示,该算法显著提升了无人机图像的目标检测性能,具有广泛的应用前景。

    Abstract:

    To address the challenge of low detection accuracy for small objects in drone aerial images due to dense targets and complex backgrounds, we proposed MF-YOLO. First, the multi-path feature fusion capability is enhanced to integrate features from different layers, preserving shallow details and improving small object detection accuracy. Second, the EMA attention mechanism is adopted to improve the recognition rate of target regions and the accuracy, effectively distinguishing targets from background regions. Then, a Dense Attention Layer (DAL) is introduced to enhance the algorithm′s feature extraction capability in dense regions by focusing on these areas and suppressing irrelevant features. Next, a Squeeze-and-Excitation detection head is designed, incorporating the SE attention mechanism to suppress redundant features and further improve small object detection accuracy. Finally, a video dataset is constructed, and a target detection system is designed to visualize the algorithm′s detection performance. Experimental validation on the VisDrone2019 dataset shows that MF-YOLO achieves a mAP0.5 of 30.3%, a 3.4% improvement compared to the YOLOv8n baseline algorithm. The results demonstrate that the algorithm significantly improves object detection performance in drone images and has broad application prospects.

    参考文献
    相似文献
    引证文献
引用本文

王灵超,沈学利,艾强,闫海龙.多路径特征融合的YOLOv8航拍图像检测算法[J].电子测量技术,2025,48(17):160-168

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告