内河船舶检测算法的轻量化改进
DOI:
CSTR:
作者:
作者单位:

1.中国科学技术大学研究生院科学岛分院 合肥 230026;2.中国科学院合肥物质科学研究院 合肥 230031

作者简介:

通讯作者:

中图分类号:

TP391;TN919.8

基金项目:

国家重点研发计划项目(2023YFC3705104)资助


Lightweight improvement of inland ship detection algorithm
Author:
Affiliation:

1.Science Island Branch, Graduate School of University of Science and Technology of China,Hefei 230026, China; 2.Hefei Institutes of Physical Science, Chinese Academy of Sciences,Hefei 230031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决现有的船舶检测算法参数量与计算量较大,以及尺度和视角变化导致检测结果波动的问题,提出一种改进YOLOv8n的轻量化内河船舶检测算法YOLO-LISD。首先,设计融合细节增强卷积的高效特征共享检测头替换原检测头,提升检测一致性;其次,引入slim-neck方法改进颈部网络,在保证检测性能前提下缩小模型体积;再次,提出全局通道自适应幅度剪枝算法深度压缩模型,提升检测效率;最后,设计基于空间和通道相关性的特征知识蒸馏,提高剪枝后模型的检测精度。实验结果表明,YOLO-LISD相比YOLOv8n模型参数量与计算量分别减少68.4%与56.8%,在SeaShips数据集上检测的准确率与mAP50:95分别提高1.1%和2.1%。实际应用中,在低算力设备上检测速度达到55 fps,满足实时性要求。与其他算法对比展现明显优势,验证了该方法的优越性。

    Abstract:

    To address the challenges of large parameter sizes and computational demands in existing ship detection algorithms, as well as the fluctuations in detection results caused by scale and perspective variations, we propose an improved lightweight inland ship detection algorithm, YOLO-LISD, based on YOLOv8n. First, an efficient feature-sharing detection head, incorporating detail-enhanced convolution, is introduced to replace the original detection head, improving detection consistency. Second, a slim-neck method is incorporated to optimize the neck network, reducing the model size while maintaining detection performance. Third, a global channel-adaptive magnitude-based pruning algorithm is proposed for depth compression, enhancing detection efficiency. Finally, a feature knowledge distillation approach, leveraging spatial and channel correlations, is designed to improve the detection accuracy of the pruned model. Experimental results demonstrate that, compared to YOLOv8n, YOLO-LISD reduces the number of parameters and computational complexity by 68.4% and 56.8%, respectively, while improving detection accuracy and mAP50:95 on the SeaShips dataset by 1.1% and 2.1%, respectively. In practical applications, the detection speed of low computing power equipment reaches 55 fps, meeting real-time requirements. Compared to other algorithms, it demonstrates significant advantages, validating the superiority of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

董健,赵欣,毋路遥,吴凯丽,司福祺.内河船舶检测算法的轻量化改进[J].电子测量技术,2025,48(15):129-140

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告