基于STA机制的AE-BiLSTM的滚动轴承剩余寿命预测
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院 南京 210044;2.江苏省大气环境与装备技术协同创新中心 南京 210044

作者简介:

通讯作者:

中图分类号:

TH17;TN98

基金项目:

国家自然科学基金(62105160)项目资助


Rolling bearing remaining life prediction using AE-BiLSTM with STA mechanism
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Science and Technology,Nanjing 210044,China;2.Jiangsu Collaborative Innovation Center for Atmospheric Environment and Equipment Technology,Nanjing 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轴承作为机械零部件中不可或缺的组成部分,长时间工作容易导致轴承磨损和疲劳失效,进而影响机械设备的正常运转。因此,对轴承的剩余使用寿命(RUL)的预测可以有效避免意外发生,确保设备安全可靠地运行。为了提高滚动轴承的的RUL预测精度,本文提出了一种基于空间时间注意力(STA)机制的自编码(AE)和双向长短期记忆(BiLSTM)的滚动轴承寿命预测方法,有效地整合轴承数据中的多种模态信息,从而捕捉轴承运行状态的变化。首先,将原始振动信号输入到自编码模型自动提取故障特征;然后,将提取的特征输入到STA模型中,对特征数据在特征维度上的空间信息和运行时间步长信息进行深度加权融合,以更全面地捕捉特征维度和时间维度的信息;再结合BiLSTM模型对轴承的剩余使用寿命进行预测;最后,通过PHM2012挑战赛数据集和ABLT-1A轴承全寿命周期数据进行试验验证,实验结果表明所提出的模型的RMSE平均降低了约 22.76%,MAE平均降低了约 26.57%,而 R2平均提升了约 12.47%,可以看出所提出方法对RUL预测准确度有明显的提升。

    Abstract:

    Bearing as an indispensable part of mechanical parts, long-term work is easy to lead to bearing wear and fatigue failure, and then affect the normal operation of mechanical equipment. Therefore, the prediction of the remaining useful life (RUL) of the bearing can effectively avoid accidents and ensure the safe and reliable operation of the equipment. To enhance the prediction accuracy of the RUL for rolling bearings, this paper proposes a rolling bearing life prediction method based on spatio-temporal attention (STA) and bidirectional long short-term memory (BiLSTM). Effectively integrate multiple modal information in bearing data to capture changes in bearing operating state. Firstly, the original vibration signal is input to auto-encoder (AE) model to extract fault features automatically. Then, the extracted features are input into the STA model, and the spatial information and running time step information of the feature data in the feature dimension are deeply weighted to capture the information of the feature dimension and time dimension more comprehensively. Combined with BiLSTM model, the remaining service life of bearing is predicted. Finally, experimental validation is conducted using datasets from the PHM2012 Challenge and ABLT-1A bearing full-life cycle data.The experimental results indicate that the proposed model has achieved an average reduction of approximately 22.76% in RMSE and 26.57% in MAE, while the R2has improved by an average of about 12.47%. It can be concluded that the proposed method significantly enhances the accuracy of RUL prediction.

    参考文献
    相似文献
    引证文献
引用本文

施彤,张自豪,邱晓惠,张菀.基于STA机制的AE-BiLSTM的滚动轴承剩余寿命预测[J].电子测量技术,2025,48(16):19-28

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告