联合多尺度注意力与混合池化的手腕创伤X光图像检测
DOI:
CSTR:
作者:
作者单位:

1.厦门理工学院机械与汽车工程学院 厦门 361024;2.厦门大学航空航天学院 厦门 361005

作者简介:

通讯作者:

中图分类号:

TP391.4; TN919.8

基金项目:

福建省自然科学基金(2023J011439)项目资助


Combining multi-scale attention and hybrid pooling for wrist trauma X-ray image detection
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024,China; 2.School of Aerospace Engineering, Xiamen University, Xiamen 361005,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对X光图像中的骨折、软组织肿胀、骨病变等多类创伤的辅助检测问题,提出一种基于深度卷积神经网络的目标检测算法模型WristXNet。首先设计了多尺度注意力特征聚合模块C2f_MSAF来增强模型对多尺度目标的特征理解能力;其次构建了混合池化空间金字塔模块HPSP来增强对不同类别目标关联特征的提取能力;随后引入动态上采样模块DySample来进一步增强对细粒度特征的捕捉能力;最后设计了具有解耦结构的轻量化检测头LDDHead来提升模型计算效率。在儿童手腕创伤X光图像公开数据集GRAZPEDWRI-DX上的实验结果表明,所提算法针对X光图像中的7类常见目标的平均检测精度mAP取得最高值68.5%,相比现有最优算法提升了1.6%,且模型大小仅为3.3 M,处理效率达到每秒156.9张图像,体现了良好的综合性能。

    Abstract:

    To address the challenge of assisting in the detection of multiple types of traumas, including fractures, soft tissue swelling, and bone lesions in X-ray images, a target detection algorithm model based on deep convolutional neural networks WristXNet is proposed. Firstly, a multi-scale attention feature aggregation module C2f_MSAF was designed to enhance the model′s ability to understand features of multi-scale targets. Secondly, a hybrid pooling spatial pyramid module HPSP was constructed to improve the extraction of correlated features among different target categories. Subsequently, a dynamic upsampling module DySample was introduced to further enhance the capture of fine-grained features. Finally, a lightweight detection head with a decoupled structure LDDHead was developed to improve computational efficiency. Experimental results on the publicly available pediatric wrist trauma X-ray dataset GRAZPEDWRI-DX, demonstrate that the proposed algorithm achieves the highest mean average precision (mAP) of 68.5% across seven common target categories in X-ray images, surpassing the current state-of-the-art algorithm by 1.6%. Additionally, the model size is only 3.3 M, and it achieves a processing efficiency of 156.9 images per second, demonstrating excellent overall performance.

    参考文献
    相似文献
    引证文献
引用本文

林淑娟,钟铭恩,谭佳威,范康,林志强.联合多尺度注意力与混合池化的手腕创伤X光图像检测[J].电子测量技术,2025,48(16):180-188

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告