基于SDGW-YOLOv11的煤矿井下遮挡场景输送带异物检测
DOI:
CSTR:
作者:
作者单位:

西安科技大学计算机科学与技术学院 西安 710054

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911

基金项目:

国家自然科学基金青年项目(62303375)资助


Foreign object detection for underground coal mine conveyor belts in occlusion scenarios based on SDGW-YOLOv11
Author:
Affiliation:

College of Computer Science & Technology, Xi′an University of Science and Technology,Xi′an 710054,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对煤矿井下输送带中的大块矸石和锚杆等异物被遮挡且异物尺度多变容易导致漏检误检问题,提出了一种改进的煤矿井下输送带异物检测模型SDGW-YOLOv11。首先为了通过多视角特征融合和一致性正则化,从多个位置和尺度上提取特征,对遮挡异物也进行良好的检测,在YOLOv11的颈部网络中引入SEAM注意力机制,减少了遮挡对检测干扰;为了改善模型对异物自身以及被遮挡的尺寸变化的适应能力,设计C3k2_DCN模块,并添加到YOLOv11骨干网络中,提高模型对异物的局部感知能力;最后为了防止添加注意力机制导致模型过大,影响检测速度,对模型进行优化,使用GhostConv代替部分Conv减少模型的参数量,并采用WIoU损失函数替换原有损失函数提高收敛速度。实验结果表明,SDGW-YOLOv11模型检测精度可达86.1%,相对于原模型提高了4.6%,改进的模型检测速度达82 fps,可充分满足输送带异物实时检测要求,改进的模型在精确率和mAP@0.5指标上均高于Faster R-CNN、SSD、YOLOv3、YOLOv5、YOLOv7、YOLOv8、YOLOv9、YOLOv10、YOLOv11模型,减少了异物遮挡以及尺度变化的漏检误检情况,能更好的适应煤矿输送带异物检测场景。

    Abstract:

    To address the issues of missed and false detections caused by occlusions and scale variations of foreign objects such as large gangue stones and anchor rods on underground coal mine conveyor belts, an improved detection model, SDGW-YOLOv11, is proposed. First, to achieve effective detection of occluded objects through multi-perspective feature fusion and consistency regularization, and to extract features from multiple positions and scales, the SEAM attention mechanism is introduced into the neck network of YOLOv11. This mechanism reduces the interference caused by occlusion during detection. Second, to enhance the model′s adaptability to the size variations of objects, both occluded and unoccluded, the C3k2_DCN module is designed and integrated into the backbone network of YOLOv11, improving the model′s local perception capability for objects. Finally, to prevent the attention mechanism from significantly increasing the model size and affecting detection speed, the model is optimized by replacing some conventional convolutional layers with GhostConv to reduce the number of parameters and adopting the WIoU loss function to replace the original loss function, thereby accelerating convergence.Experimental results show that the SDGW-YOLOv11 model achieves a detection accuracy of 86.1%, representing a 4.6% improvement over the original model. The optimized model achieves a detection speed of 82 fps second (FPS), fully meeting the requirements for real-time detection of conveyor belt foreign objects. The improved model outperforms Faster R-CNN, SSD, YOLOv3, YOLOv5, YOLOv7, YOLOv8, YOLOv9, YOLOv10, and YOLOv11 in both precision and mAP@0.5, effectively reducing missed and false detections caused by occlusion and scale variation. It is better suited for foreign object detection in underground coal mine conveyor belt scenarios.

    参考文献
    相似文献
    引证文献
引用本文

于绍凯,董立红,秦昳.基于SDGW-YOLOv11的煤矿井下遮挡场景输送带异物检测[J].电子测量技术,2025,48(17):151-159

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告