混合边缘保护和照度显著决策的医学图像融合
DOI:
CSTR:
作者:
作者单位:

广东工业大学信息工程学院 广州 510006

作者简介:

通讯作者:

中图分类号:

TN391.41

基金项目:

国家自然科学基金(61901123)项目资助


Medical image fusion based on hybrid edge preservation and illumination saliency decision
Author:
Affiliation:

School of Information Engineering,Guangdong University of Technology,Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多模态医学图像融合是一种整合不同模态有效特征信息、服务于临床诊疗的计算机辅助诊断技术。针对现有多模态医学图像融合方法存在边缘特征保留和显著能量感知缺陷问题,提出一种基于混合多尺度边缘保护和深度图像先验照度显著决策的医学图像融合算法。首先,利用截断Huber滤波(THF)分解源图像获取显著能量层和粗尺度细节层,再使用多级分解潜在低秩表示(MDLatLRR)平滑显著能量层获取细尺度细节层;其次,在基础层上使用基于深度图像先验生成照度图决策的融合规则以提高融合图像的视觉感知效果;针对复杂尺度边缘细节层,通过计算高频核能映射得到修正权重从而融合细节层;最后线性重构分量得到最终的融合结果。实验表明,本文方法在主观视觉上优于其他对比方法,在QW、QP和QAB/F客观指标上分别平均提高了6.42%、16.33%和12.58%。

    Abstract:

    Multimodal medical image fusion is a computer-aided diagnostic technique designed to integrate effective feature information from different modalities, serving clinical diagnosis and treatment. To address the deficiencies in edge feature preservation and saliency energy perception in existing multimodal medical image fusion methods, this paper proposes a medical image fusion algorithm based on hybrid multi-scale edge preservation and deep image prior-guided illumination saliency decision. First, the truncated Huber filter (THF) is utilized to decompose the source images into a saliency energy layer and a coarse-scale detail layer. Multi-level decomposition latent low-rank representation (MDLatLRR) is then applied to smooth the saliency energy layer and extract fine-scale detail layers. Second, for the base layer, a fusion rule based on illumination map decision guided by deep image prior is used to enhance the visual perception of the fused image. For complex scale edge detail layers, high-frequency nuclear energy mapping is employed to calculate correction weights for fusing the detail layers. Finally, the fusion result is obtained by linearly reconstructing the components. Experiments demonstrate that the proposed method outperforms other state-of-the-art methods in terms of subjective visual quality. Moreover, it achieves average improvements of 6.42%, 16.33%, and 12.58% in the objective metrics QW, QP, and QAB/F, respectively.

    参考文献
    相似文献
    引证文献
引用本文

彭彤彪,田妮莉,潘晴.混合边缘保护和照度显著决策的医学图像融合[J].电子测量技术,2025,48(11):166-174

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码