基于SecureViT的恶意代码检测模型
DOI:
CSTR:
作者:
作者单位:

沈阳理工大学信息科学与工程学院 沈阳 110159

作者简介:

通讯作者:

中图分类号:

TN918.1

基金项目:

辽宁省教育厅高等学校基本科研项目(JYTMS20230189)、沈阳理工大学引进高层次人才科研支持计划(1010147001131)项目资助


Malicious code detection model based on SecureViT
Author:
Affiliation:

College of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着恶意代码的多样性和隐蔽性不断增加,传统的恶意代码检测方法在面对未知恶意代码时往往面临高成本和不稳定性的挑战。本研究旨在提出一种轻量化且高效的恶意代码检测模型,以适应资源受限环境中的应用需求。本文提出了一种基于SecureViT的轻量化恶意代码检测模型。该模型通过引入ACF模块与MSDC模块实现高效特征提取与精准分类。ACF模块增强了模型对全局上下文信息的建模能力,MSDC模块则通过多尺度特征提取与动态显著性调整进一步提升特征表达的丰富性。实验结果表明,SecureViT模型在Malimg、Virus-MNIST和BIG2015数据集上的分类精度分别为97.46%、91.17%和95.49%,且计算开销仅为1.71 GMAC,显著提高了检测性能并有效降低了计算成本。该模型在恶意代码检测中展现了优异的检测精度与低计算复杂度,具备在资源受限环境中的实际应用潜力。

    Abstract:

    With the increasing diversity and concealment of malicious code, traditional detection methods often face high costs and instability when dealing with unknown malware. This study aims to propose a lightweight and efficient malware detection model to meet the application requirements in resource-constrained environments. This paper proposes a lightweight malware detection model based on SecureViT. The model achieves efficient feature extraction and accurate classification by introducing the ACF module and MSDC module. The ACF module enhances the model′s ability to model global context information, while the MSDC module further improves the richness of feature representation through multi-scale feature extraction and dynamic significance adjustment. Experimental results show that the SecureViT model achieves classification accuracies of 97.46%, 91.17%, and 95.49% on the Malimg, Virus-MNIST, and BIG2015 datasets, respectively, with a computational cost of only 1.71 GMAC, significantly improving detection performance and effectively reducing computational costs. This model demonstrates excellent detection accuracy and low computational complexity, making it highly applicable in resource-constrained environments.

    参考文献
    相似文献
    引证文献
引用本文

张傲,刘微,刘阳,李波,刘芳菲.基于SecureViT的恶意代码检测模型[J].电子测量技术,2025,48(16):113-121

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告