基于YOLO-BioFusion的血细胞检测模型
DOI:
CSTR:
作者:
作者单位:

沈阳理工大学信息科学与工程学院 沈阳 110159

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

辽宁省教育厅高等学校基本科研项目(JYTMS20230189)、沈阳理工大学引进高层次人才科研支持计划(1010147001131)项目资助


Blood cell detection model based on YOLO-BioFusion
Author:
Affiliation:

College of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    血细胞检测是临床诊断中的重要任务,尤其在面对细胞类型多样、尺寸差异显著、目标重叠频繁以及复杂背景时,现有检测模型的精度和鲁棒性仍面临挑战。为解决这些问题,本文提出了一种改进的YOLOv8目标检测模型——YOLO-BioFusion。该模型通过引入ACFN模块,提高了对细小目标和重叠目标的检测能力;应用C2f-DPE和SPPF-LSK模块增强了多尺度特征的融合与提取,提升了模型的鲁棒性和泛化能力;同时,采用Inner-CIoU损失函数加速了模型收敛并提高了定位精度。实验结果表明,在BCCD数据集上,YOLO-BioFusion的mAP@0.5为94.0%,mAP@0.5:0.95为65.2%,分别较YOLOv8-n提高了1.9%和3.2%。与此同时,计算成本仅为6.8 GFLOPs,展示了其在资源受限环境中的应用潜力。该研究为复杂背景下的血细胞检测提供了一种高效且精确的解决方案。

    Abstract:

    Blood cell detection is a crucial task in clinical diagnosis. However, due to the diverse cell types, significant size variations, frequent target overlap, and complex backgrounds, existing detection models still face challenges in terms of accuracy and robustness. To address these issues, this paper proposes an improved YOLOv8-based object detection model, YOLO-BioFusion.The model incorporates the ACFN module to enhance the detection of small and overlapping targets. Additionally, the C2f-DPE and SPPF-LSK modules are introduced to strengthen multi-scale feature fusion and extraction, improving the model′s robustness and generalization ability. Meanwhile, the adoption of the Inner-CIoU loss function accelerates model convergence and enhances localization accuracy.Experimental results on the BCCD dataset demonstrate that YOLO-BioFusion achieves an mAP@0.5 of 94.0% and an mAP@0.5:0.95 of 65.2%, outperforming YOLOv8-n by 1.9% and 32%, respectively. Moreover, with a computational cost of only 6.8 GFLOPs, YOLO-BioFusion exhibits great potential for applications in resource-constrained environments. This study provides an efficient and accurate solution for blood cell detection in complex backgrounds.

    参考文献
    相似文献
    引证文献
引用本文

张傲,刘微,刘阳,杨思瑶,管勇.基于YOLO-BioFusion的血细胞检测模型[J].电子测量技术,2025,48(18):177-188

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告