融合多策略改进的北方苍鹰算法及其应用
DOI:
CSTR:
作者:
作者单位:

1.华北电力大学自动化系 保定 071003;2.保定市综合能源系统状态检测与优化调控重点实验室 保定 071003; 3. 广西大学机械工程学院 南宁 530004

作者简介:

通讯作者:

中图分类号:

TP301.6;TN2

基金项目:

国家自然科学基金(22272035)项目资助


The northern goshawk algorithm integrating Multi-strategy improvement and its application
Author:
Affiliation:

1.Department of Automation, North China Electric Power University,Baoding 071003,China;2.Baoding Key Laboratory of State Detection and Optimization Regulation for Integrated Energy System, Baoding 071003,China; 3. School of Mechanical Engineering, Guangxi University, Nanning 530004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对北方苍鹰算法寻优精度低以及容易陷入最优值等问题,提出一种融合减法优化器和t分布小波变异的改进北方苍鹰算法。首先,在算法初始阶段利用Tent映射-动态反向学习策略,提高初始种群的质量和多样性,加快算法的迭代速度;其次,在勘探阶段融合减法平均优化器和最佳值引导策略更新种群位置;最后,采用自适应t分布小波变异策略对种群进行扰动,避免陷入局部最优。通过测试函数仿真实验并将改进后的算法与极限学习机相结合,用于预测光伏发电量的情况,同时应用于两种工程设计问题中,实验结果表明,改进后的算法对比其他改进算法在收敛精确度和鲁棒性方面有显著提升,并且有效提升了解决复杂问题的性能。

    Abstract:

    To address the issues of low optimization accuracy and the tendency to fall into local optima in the northern goshawk algorithm, an improved version is proposed that integrates the subtraction optimizer and t-distribution wavelet mutation. In the initial phase of the algorithm, the Tent map combined with the dynamic reverse learning strategy is utilized to improve the quality and diversity of the initial population, thereby accelerating the iteration speed of the algorithm.Secondly,in the exploration stage, the subtractive average optimizer and the best value guidance strategy are introduced to update the population position. Finally, an adaptive t-distribution wavelet mutation strategy is employed to perturb the population, preventing it from falling into local optima.Through simulation experiments using test functions and integrating the improved algorithm with the extreme learning machine, the approach was applied to predict photovoltaic power generation. Additionally, it was implemented in two engineering design applications. The experimental results demonstrate that the improved algorithm significantly outperforms other modified algorithms in terms of convergence accuracy and robustness, and effectively enhances the performance in solving complex problems.

    参考文献
    相似文献
    引证文献
引用本文

赵深,韦根原,常耀华,陈亮,侯彦辰.融合多策略改进的北方苍鹰算法及其应用[J].电子测量技术,2025,48(13):96-110

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告