基于KNN-LASSO-PPC法的改进BitCN-LSTM短期光伏功率预测
DOI:
CSTR:
作者:
作者单位:

1.湖南工业大学电气与信息工程学院 株洲 412007;2.株洲高新电业集团有限公司新动力分公司 株洲 412007

作者简介:

通讯作者:

中图分类号:

TP271;TN06

基金项目:

国家自然科学基金(52377185)项目资助


Improved BitCN-LSTM short-term photovoltaic power prediction based on the KNN-LASSO-PPC method
Author:
Affiliation:

1.College of Electrical and Information Engineering,Hunan University of Technology,Zhuzhou 412007, China; 2.Zhuzhou High-tech Electric Power Group Co., Ltd., New Power Branch,Zhuzhou 412007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光伏出力受天气条件随机性和波动性影响的特点,提出一种基于KNN-LASSO-PCC法的改进BitCN-LSTM神经网络短期光伏功率预测方法。首先,采用KNN对数据集进行清洗,再结合LASSO与PCC进行多层特征筛选;然后,在传统BitCN-LSTM方法基础上加入GRU与Elman神经网络,其中,GRU解决长时间依赖问题和参数优化问题,Elman网络增强局部时序建模和记忆能力;最后,在多层特征筛选下选取直角辐射、散角辐射、气温和湿度作为输入变量,选取光伏电站各时段发电功率的预测值作为最终输出,进行为期1~3天间隔15 min进行一次预测的仿真,所得的最优评估指标平均绝对误差、均方误差以及平均绝对百分比误差分别为9.976 3%、1.702 9%和10.626 7%,训练时间和最优测试时间分别为181.305 1 s和0.058 932 s,相较于其他常见的短期光伏预测模型精度更高,速度更快。

    Abstract:

    The photovoltaic power output is influenced by the randomness and volatility of weather conditions. To address this, an improved BitCN-LSTM neural network-based short-term photovoltaic power forecasting method is proposed using the KNN-LASSO-PCC approach. First, the KNN method is used to clean the dataset. Then, multi-layer feature selection is applied by combining LASSO and PCC. Next, GRU and Elman neural networks are incorporated into the traditional BitCNLSTM method. Specifically, GRU solves long-term dependency issues and parameter optimization problems, while the Elman network enhances local time-series modeling and memory capacity. Finally, after multi-layer feature selection, global horizontal radiation, diffuse radiation, temperature, and humidity are selected as input variables, and the predicted photovoltaic power output for each time period is selected as the final output. A simulation is conducted for a 1~3 day period with predictions made every 15 minutes. The resulting optimal evaluation metrics are an average absolute error of 9.976 3%, mean squared error of 1.702 9%, and average absolute percentage error of 10.626 7%. The training time and optimal testing time are 181.305 1 s and 0.058 932 s, respectively. Compared to other commonly used short-term photovoltaic forecasting models, the proposed method achieves higher accuracy and faster speed.

    参考文献
    相似文献
    引证文献
引用本文

贺宇轩,王锟,曾进辉,刘颉,周武定.基于KNN-LASSO-PPC法的改进BitCN-LSTM短期光伏功率预测[J].电子测量技术,2025,48(15):42-51

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告