轨道缺陷无损检测技术研究现状综述
DOI:
CSTR:
作者:
作者单位:

1.广州计量检测技术研究院 广州 510000; 2.华中科技大学人工智能与自动化学院 武汉 430000

作者简介:

通讯作者:

中图分类号:

TN29;TH878

基金项目:

广东省市场监管局科技项目(2023CJ09)资助


Review of the research status of nondestructive testing technology for track defects
Author:
Affiliation:

1.Guangzhou Institute of Metrology and Testing Technology,Guangzhou 510000, China; 2.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology,Wuhan 430000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着轨道交通的快速发展,轨道缺陷检测成为保障安全的关键。本文系统综述了常见轨道缺陷类型,如钢轨的疲劳裂纹、灼伤、扣件松动等。详细介绍了超声波、涡流、漏磁、机器视觉等检测技术及其原理、应用与进展,涵盖常规超声、相控阵超声、激光超声、超声导波等多种超声检测衍生方法,以及涡流检测在抑制趋肤效应、结合热成像等方面的创新,漏磁检测在信号处理和新型提离层等方面的改进,机器视觉检测中传统图像处理与深度学习方法的特点。同时阐述了多源信息融合技术在轨道缺陷检测中的应用成果,如利用多技术采集数据结合深度学习模型进行缺陷识别定位,最后分析了多源技术融合面临的挑战并对未来研究方向提出建议,为轨道缺陷检测技术发展提供全面参考。

    Abstract:

    With the rapid development of rail transit, the detection of track defects has become crucial for ensuring safety. This paper systematically reviews common types of track defects, such as fatigue cracks, burns of rails, and fastener looseness. It elaborates in detail on detection technologies including ultrasonic, eddy current, magnetic flux leakage, and machine vision, as well as their principles, applications, and advancements. This encompasses various derivative methods of ultrasonic detection, such as conventional ultrasound, phased array ultrasound, laser ultrasound, and ultrasonic guided waves. Additionally, it covers the innovations in eddy current detection regarding the suppression of the skin effect and combination with thermal imaging; the improvements in magnetic flux leakage detection in terms of signal processing and new lift-off layer design; and the characteristics of traditional image processing and deep learning methods in machine vision detection. Meanwhile, the application achievements of multi-source information fusion technology in track defect detection are expounded. For example, defect identification and localization are realized by collecting data from multiple technologies and integrating deep learning models. Finally, the challenges faced by multi-source technology fusion are analyzed, and suggestions for future research directions are proposed, providing a comprehensive reference for the development of track defect detection technologies.

    参考文献
    相似文献
    引证文献
引用本文

张志宏,张力玲,马婷婷,钟胜,黄锋.轨道缺陷无损检测技术研究现状综述[J].电子测量技术,2025,48(18):53-72

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告