融合多源信息及图像特征泛化的空气质量检测
DOI:
CSTR:
作者:
作者单位:

1.开封大学信息工程学院 开封 475004;2.郑州大学国家超级计算郑州中心 郑州 450001

作者简介:

通讯作者:

中图分类号:

TN919.8;TP391.4

基金项目:

河南省科技攻关项目(232102210008)资助


Air quality detection based on multi-source information and image feature generalization
Author:
Affiliation:

1.School of Information Engineering, Kaifeng University, Kaifeng 475004, China;2.National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对空气PM2.5浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气象信息映射为与大气图像对应的特征向量,并与大气图像特征进行拼接融合;然后利用全连接层将全局特征输出为标量,并利用损失函数检测出空气的PM2.5浓度;最后在网络模型训练阶段,通过对大气图像不同尺度的特征进行随机泛化增强来丰富样本分布空间,使网络能够在有限的数据样本中学习到更多特征,从而有效改善了检测网络的性能。实验结果表明:设计的检测方法与几种主流的方法相比具有更高的检测精度和稳定性,在测试集上得到的RMSE和 R-squared分别为21.55 μg/m3和0.923,通过对8个场景检测,得到结果的平均误差仅为5.2%,最大误差也仅为7.6%,能够适应各类极端大气污染环境的空气质量检测任务。

    Abstract:

    In response to the issue of excessive reliance on professional equipment for detecting air PM2.5 concentration, an air quality detection algorithm based on multi-source information and image feature generalization is proposed. Firstly, the EfficientNet-B0 was used as the backbone network for feature encoding of the input atmospheric visible image, the multi-source meteorological information, such as temperature, humidity, wind speed, pressure and light intensity, was mapped into feature vectors corresponding to the atmospheric image, and fused with the atmospheric image features. Then, the global features were output as scalars using a fully connected layer, and the PM2.5 concentration in the air was detected using a loss function. Finally, the features of atmospheric images at different scales were randomly generalized and enhanced in the training phase of the network model to enrich the sample distribution space, making the network to learn more features from limited data samples, thereby effectively improving the performance of the detection network. The experimental results show that the designed air quality detection method has higher detection accuracy and stability compared to several mainstream methods, the RMSE and R-squared obtained on the test set are 21.55 μg/m3 and 0.923, respectively. The average error obtained by detecting 8 scenarios is only 5.2%, and the maximum error is only 7.6%, which can adapt to air quality testing tasks in various extreme atmospheric pollution environments.

    参考文献
    相似文献
    引证文献
引用本文

王晓婷,崔雅博,刘丽娜.融合多源信息及图像特征泛化的空气质量检测[J].电子测量技术,2025,48(13):166-173

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告