基于扩散模型的二阶段细化图像修复模型
DOI:
CSTR:
作者:
作者单位:

东北林业大学计算机与控制工程学院 哈尔滨 150040

作者简介:

通讯作者:

中图分类号:

TP391.41; TN0

基金项目:

国家自然科学基金(32202147)、中央高校基本科研专项资金项目(2572019BF09)资助


Diff-2sIR: Diffusion-based refinement two-stage image restoration model
Author:
Affiliation:

College of Computer Science and Control Engineering, Northeast Forestry University, Harbin 150040, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,图像生成领域的技术取得了显著进展,但图像修复任务中修复区域与未修改区域之间的一致性仍是一个普遍存在的挑战。本文旨在提出一种基于扩散模型的两阶段图像修复模型(Diff-2sIR),以提升修复区域与未修复区域的一致性,进一步提高图像修复质量。本文以扩散模型理论为基础,设计了一种两阶段修复框架。通过改进U-Net架构和扩散模型采样算法,对初步修复结果进行二次细化修复,缓解了修复区域与未修复区域之间的不一致性问题。在CelebA-HQ数据集的人脸修复任务中,Diff-2sIR模型取得了最优FID分数(2.92),显著提升了修复质量。实验结果表明,该模型在指导模块修复结果的基础上进一步细化修复效果,展现了卓越的性能。本文提出的Diff-2sIR模型有效解决了修复区域与未修复区域之间的不一致性问题,为图像修复任务提供了一种新的解决方案,具有重要的理论意义和应用价值。

    Abstract:

    In recent years, significant progress has been made in the field of image generation, but the consistency between the repaired and unmodified regions remains a common challenge in image inpainting tasks. This paper proposes a two-stage image inpainting model based on diffusion models (Diff-2sIR) to enhance the consistency between the repaired and unmodified regions, thereby improving the overall quality of image inpainting. Based on the theory of diffusion models, a two-stage inpainting framework is designed. By improving the U-Net architecture and the diffusion model sampling algorithm, the initial inpainting results are further refined in a second stage, alleviating the inconsistency between the repaired and unmodified regions. In the face inpainting task on the CelebA-HQ dataset, the Diff-2sIR model achieves the best FID score (2.92), significantly improving the inpainting quality. Experimental results show that the model further refines the inpainting results based on the guidance module, demonstrating exceptional performance. The Diff-2sIR model effectively addresses the inconsistency between the repaired and unmodified regions, providing a new solution for image inpainting tasks, with significant theoretical and practical implications.

    参考文献
    相似文献
    引证文献
引用本文

张绪,胡峻峰.基于扩散模型的二阶段细化图像修复模型[J].电子测量技术,2025,48(17):142-150

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告