基于CNN-BiLSTM-Attention的风电机组故障预警
DOI:
CSTR:
作者:
作者单位:

长沙理工大学电气与信息工程学院 长沙 410114

作者简介:

通讯作者:

中图分类号:

TM614;TN03

基金项目:

国家自然科学基金(62103063)、湖南省教育厅科学研究项目(22B0329)、长沙理工大学研究生实践创新项目(CSLGCX23072)资助


Early fault warning of wind turbines based on CNN-BiLSTM-Attention
Author:
Affiliation:

School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在研究基于深度学习的风电机组故障预警问题时,针对模型的预测精度与故障预警的准确性问题,提出了一种融合CNN、BiLSTM、注意力机制Attention的组合模型预警方法。首先,针对SCADA原始数据质量较低的问题,使用参数优化的DBSCAN算法结合风电机组控制原理完成数据清洗,并使用GRA分析法筛选原始特征以降低特征间冗余;针对模型预测精度问题,为提高BiLSTM网络的特征提取能力以及对于关键特征的聚焦能力,分别引入CNN和注意力机制,搭建出组合网络模型;最后使用指数加权方法对功率残差进行平滑处理,从而确定预警阈值,实现风电机组的故障预警。通过某风电场的SCADA数据验证了方法的有效性。实验结果表明:本文模型相比于BiLSTM模型误差指标RMSE、MAE分别降低了29.8 %、30.7 %,拟合度R2提高了4.8 %。预警时间比SCADA报警日志提前2~6 h。

    Abstract:

    In the study of wind turbine fault early warning based on deep learning, aiming at the prediction accuracy of the model and the accuracy of fault early warning, a combined model early warning method combining CNN, BiLSTM and attention mechanism Attention is proposed. Firstly, aiming at the problem of low quality of SCADA raw data, the parameter-optimized DBSCAN algorithm is combined with the control principle of wind turbine to complete data cleaning, and the GRA analysis method is used to screen the original features to reduce the redundancy between features. Aiming at the problem of model prediction accuracy, in order to improve the feature extraction ability of BiLSTM network and the focusing ability of key features, CNN and attention mechanism are introduced respectively to build a combined network model. Finally, the exponential weighting method is used to smooth the power residual, so as to determine the early warning threshold and realize the fault early warning of wind turbines. The effectiveness of the method is verified by the SCADA data of a wind farm. The experimental results show that compared with the BiLSTM model, the error indexes RMSE and MAE of the proposed model are reduced by 29.8 % and 30.7 % respectively, and the fitting degree R2 is increased by 4.8 %. The warning time is 2~6 hours earlier than the SCADA alarm log.

    参考文献
    相似文献
    引证文献
引用本文

倪炳阳,何青.基于CNN-BiLSTM-Attention的风电机组故障预警[J].电子测量技术,2025,48(11):78-87

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码