基于改进Retinex与双CNNs的钢轨表面缺陷图像增强算法研究
DOI:
CSTR:
作者:
作者单位:

华东交通大学信息与软件工程学院 南昌 330013

作者简介:

通讯作者:

中图分类号:

TN391.41;U216.3

基金项目:

国家自然科学基金(62262021)、江西省重点研发计划(20244BBG73002)项目资助


Research on image enhancement algorithm of rail surface defects based on improved Retinex and dual CNNs
Author:
Affiliation:

School of Information and Software Engineering, East China Jiaotong University,Nanchang 330013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在钢轨表面缺陷检测过程中,受光照不均、镜头抖动等外界因素的影响,采集的图像存在对比度低、背景不均匀和缺陷细节模糊等问题。为此,提出一种基于改进Retinex与双CNNs的钢轨表面缺陷图像增强算法。首先,将钢轨表面缺陷RGB图像转换为HSV空间后,采用引入均值和均方差,加入控制图像动态参数的Retinex算法,实现V分量对比度的调整,再通过自适应伽马变换校正图像曝光;其次,对S分量根据亮度进行自适应非线性增强,解决光照变化带来的背景不均匀问题;然后,为了进一步解决镜头抖动产生的缺陷图像细节模糊问题,设计了基于U-Net结构的去模糊子网络和超分辨细节恢复子网络组成的双CNNs网络,学习原始图像和增强后图像的语义特征,并提取其纹理特征,以获取高质量图像的纹理和细节信息。最后,采用RSDDs数据集和自制钢轨表面缺陷模糊图像数据集对模型进行训练和测试。实验结果表明,与现有的主流算法相比,峰值信噪比和结构相似性分别提高了2.61 dB和0.026,在视觉上较另外10种方法获得的钢轨表面缺陷图像具有较高的对比度、清晰的缺陷细节和丰富的纹理信息。

    Abstract:

    In the process of rail surface defect detection, due to the influence of external factors such as uneven illumination and lens shake, the collected images have problems such as low contrast, uneven background and blurred defect details. Therefore, an image enhancement algorithm for rail surface defects based on improved Retinex and dual CNNs was proposed. Firstly, after converting the RGB image of rail surface defects into HSV space, the Retinex algorithm that introduces the mean and mean square deviation and controls the dynamic parameters of the image is added to adjust the contrast of the V component, and then the image exposure is corrected by adaptive gamma transform. Secondly, the S component is enhanced according to the brightness to solve the problem of uneven background caused by lighting changes. Thirdly, in order to further solve the problem of blurring the details of defective images caused by lens shake, a dual CNNs network composed of a deblurring sub-network and a super-resolution detail recovery sub-network based on U-Net structure was designed to learn the semantic features of the original image and the enhanced image, and extract their texture features to obtain the texture and detail information of high-quality images. Finally, the RSDDs dataset and the self-made rail surface defect fuzzy image dataset were used to train and test the model. Experimental results show that compared with the existing mainstream algorithms, peak signal-to-noise ratio and structural similarity are increased by 2.61 dB and 0.026, respectively, and visually have higher contrast, clear defect details and rich texture information than the rail surface defect images obtained by the other 10 methods.

    参考文献
    相似文献
    引证文献
引用本文

罗晖,章硕生,曾伟,张金华.基于改进Retinex与双CNNs的钢轨表面缺陷图像增强算法研究[J].电子测量技术,2025,48(13):189-198

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告