非结构化道路坑洼检测的YOLOv7算法优化
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学现代测控技术教育部重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:


Optimized YOLOv7 algorithm for unstructured road pothole detection
Author:
Affiliation:

Key Laboratory of Modern Measurement & Control Technology,Ministry of Education, Beijing Information Science and Technology University,Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在非结构化道路环境中,及时准确地检测道路坑洼对于保障交通安全至关重要。当前检测算法在复杂场景中存在漏检和精度不足的问题。为提升检测性能,提出了一种基于YOLOv7算法的改进方法。首先通过引入增强的分层多尺度特征融合模块,优化特征提取能力;其次加入高效通道注意力机制,提高模型对目标区域的关注度;最后使用深度可分离卷积减少计算量,提高检测效率。改进后的模型在自制数据集上进行验证,与现有的YOLOv7x、YOLOv7-d6、YOLOv5x和YOLOv5m模型进行对比测试,并将改进后的模型进行公开数据集的迁移学习,采用精确率、召回率(R)、平均精度均值、参数量和每秒帧数作为评估指标。实验结果表明,改进模型在精确率、召回率和平均精度均值上分别提升了5.47%、4.42%和6.65%,在检测速度上也保持了较高的效率;与常用目标检测模型对比性能优异;进行公开数据集的迁移学习后,精确率、召回率和平均精度均值得到进一步提升。这一改进显著提升了模型的检测性能和鲁棒性,不仅增强了交通安全保障能力,也为无人驾驶提供了可靠的技术支持。

    Abstract:

    Timely and accurate detection of road potholes in unstructured environments is crucial for ensuring traffic safety. Current detection algorithms face challenges related to missed detections and insufficient accuracy, particularly in complex scenarios. To enhance detection performance, an improved approach based on the YOLOv7 model is proposed. This method incorporates several enhancements: first, an enhanced hierarchical multi-scale fusion module is introduced to optimize feature extraction capabilities; second, the integration of an efficient channel attention mechanism enhances the model′s focus on critical target regions; finally, depthwise separable convolutions are employed to reduce computational complexity while maintaining high detection efficiency. The improved model was validated on the self-made dataset, compared with the existing YOLOv7x, YOLOv7-d6, YOLOv5x and YOLOv5m models, and the improved model was transferred to the public dataset. The evaluation metrics used include precision, recall (R), mean average precision, parameter count, and frames per second. The experimental results show that the improved model improves the precision, recall and average accuracy by 5.47%, 4.42% and 6.65%, respectively, and maintains a high efficiency in the detection speed. Compared with commonly used object detection models, the performance is excellent; after the transfer learning of public datasets, the precision, recall, and average accuracy are worth further improving. This improvement significantly enhances the detection performance and robustness of the model, not only strengthening the ability to ensure traffic safety, but also providing reliable technical support for autonomous driving.

    参考文献
    相似文献
    引证文献
引用本文

曲雪莲,周福强,谷玉海,王少红.非结构化道路坑洼检测的YOLOv7算法优化[J].电子测量技术,2025,48(14):146-153

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码