基于1D-CNN-SVM的下肢外骨骼步态信息识别研究
DOI:
CSTR:
作者:
作者单位:

1.北京邮电大学物联网监测预警应急管理部重点实验室 北京 100876; 2.北京邮电大学网络与交换技术全国重点实验室 北京 100876

作者简介:

通讯作者:

中图分类号:

TN701

基金项目:

中国高校科技期刊研究会专项(CUJS2024-GJ-A01)、北京邮电大学基本科研业务费(2024ZCJH06)项目资助


Gait information recognition study of lower limb exoskeleton based on 1D-CNN-SVM
Author:
Affiliation:

1.Key Laboratory of the Ministry of Emergency Management for Monitoring and Early Warning of the Internet of Things, Beijing University of Posts and Telecommunications,Beijing 100876, China;2.National Key Laboratory of Network and Switching Technology, Beijing University of Posts and Telecommunications,Beijing 100876, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    下肢外骨骼的步态识别是实现人机协同控制的关键技术,然而现有步态识别方法在处理一维时序数据时面临局部特征提取效率不足、小样本泛化能力弱以及模型计算开销大等挑战。针对上述问题,本文提出一种基于1D-CNN-SVM的混合模型,通过一维卷积神经网络(1D-CNN)自动提取一维时序数据的局部特征,并利用支持向量机(SVM)在小样本条件下实现高鲁棒性分类。实验结果表明,该模型在自定义步态数据集上的总识别率达到99.00%,相较传统SVM模型和单一1D-CNN模型分别提升5.67%和7.99%。另外该模型参数量仅为26 156,单样本推理时间低至0.06 ms,显著优于1D-CNN-LSTM混合模型。本研究为下肢外骨骼的步态识别提供了一种在小样本条件下依然兼具泛化能力、识别能力与轻量化的解决方案。

    Abstract:

    Gait recognition of lower limb exoskeleton is a key technology to realize human-machine cooperative control, however, the existing gait recognition methods face the challenges of insufficient efficiency of local feature extraction, weak generalization ability of small samples, and high computational overhead of the model when dealing with one-dimensional time series data. Aiming at the above problems, this paper proposes a hybrid model based on 1D-CNN-SVM, which automatically extracts local features of 1D time-series data by a 1D convolutional neural network (1D-CNN) and realizes highly robust classification under small-sample conditions by using support vector machine (SVM). The experimental results show that the model achieves an overall recognition rate of 99.00% on the customized gait dataset, which is 5.67% and 7.99% higher than the traditional SVM model and the single 1D-CNN model, respectively. In addition, the number of parameters of this model is only 26 156, and the single-sample inference time is as low as 0.06 ms, which is significantly better than the hybrid 1D-CNN-LSTM model. This study provides a solution for gait recognition of lower limb exoskeleton that still combines generalization ability, recognition ability and light weight under small sample conditions.

    参考文献
    相似文献
    引证文献
引用本文

崔占贺,艾莉莎,马欣雨,田天齐,王松.基于1D-CNN-SVM的下肢外骨骼步态信息识别研究[J].电子测量技术,2025,48(12):71-78

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-28
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告