基于多尺度感知损失与注意力的脑图像配准
DOI:
CSTR:
作者:
作者单位:

临沂大学信息科学与工程学院 临沂 276000

作者简介:

通讯作者:

中图分类号:

TN391

基金项目:

山东省自然科学基金(ZR2021MF115,ZR2023MF062)、国家自然科学基金(61771230)项目资助


Medical image registration based on multiscale feature-perceptual loss and attention mechanism
Author:
Affiliation:

School of Information Science and Engineering, Linyi University, Linyi 276000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前基于深度学习的方法在可变形医学图像对齐任务中得到了广泛的应用,其中利用新颖的损失函数和有效的网络架构提高配准效果是常用的做法。本文设计了多尺度特征感知损失和注意力模块ECA-D,改进了只用均方误差或归一化互相关的设计思路。本文利用多站点医学图像数据训练获得一个分类神经网络,并构建多尺度特征的学习过程,提高了分类网络的准确性,进而设计多尺度的感知损失函数提高配准的准确性。为了提高对齐网络的学习能力,设计了一种新的注意力模块ECA-D,更有效地利用空间和通道信息。在LPBA40数据集上训练后,与最先进的方法相比,提出的模型在未经训练的Neurite OASIS上的Dice评分提高了3%。实验结果表明,本文的方法具有更高的配准精度和更好的鲁棒性。

    Abstract:

    Recently, deep learning-based methods have been widely applied in deformable medical image alignment tasks. Among them, utilizing novel loss functions and effective network architectures to improve registration performance is a common approach. This article proposes a multiscale feature perception loss and attention module ECA-D, which improves the design approach of using only mean square error (MSE) or normalized cross-correlation (NCC). Inspired by the current popular large language model (LLM), this paper trains a classification neural network using multi-site medical image data and constructs a multi-scale feature learning process to improve the accuracy of the classification network. Subsequently, a multi-scale perceptual loss function is designed to enhance the accuracy of registration. To improve the learning ability of the alignment network, a new attention module ECA-D was designed to more effectively utilize spatial and channel information. After training on the LPBA40 dataset, our model showed a 3% improvement in Dice score on the untrained Neurite OASIS compared to the most advanced methods. The experimental results show that compared with other popular registration methods, our method has higher registration accuracy and better robustness.

    参考文献
    相似文献
    引证文献
引用本文

马添翼,姜大帅,朱东,张林涛,李国强.基于多尺度感知损失与注意力的脑图像配准[J].电子测量技术,2025,48(15):27-34

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告