基于RF和改进蜜獾优化的牵引变压器在线故障预测
DOI:
CSTR:
作者:
作者单位:

1.大连交通大学电气工程学院 大连 116028; 2.中车大连机车车辆有限公司机车开发部 大连 116028

作者简介:

通讯作者:

中图分类号:

TN912.34

基金项目:

辽宁省教育厅科学研究项目(JYTMS20230037)资助


Online fault prediction of traction transformer based on RF and improved honey badger optimization
Author:
Affiliation:

1.School of Electrical Engineering, Dalian Jiaotong University,Dalian 116028,China; 2.Locomotive Development Department, CRRC Dalian Locomotive & Rolling Stock Co., Ltd.,Dalian 116028,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高牵引变压器在线故障预测准确率,提出了一种基于随机森林特征优选和改进蜜獾优化算法的在线故障诊断方法。首先,运用SMOTE算法对数据集进行均衡化处理,进而通过无编码比值法对故障诊断样本进行扩充;其次,通过随机森林对特征向量集合进行重要度排序,分别输入极限学习机、支持向量机和长短期记忆神经网络,得到最佳基础模型和特征个数组合;然后,结合Tent混沌映射策略、改进控制因子和小孔成像策略对蜜獾优化算法进行改进,得到改进蜜獾优化算法;最后,利用改进蜜獾优化算法和最佳基础模型及特征个数相结合,有效解决了基础模型中超参数设置问题。实验结果表明,与其他优化算法比较,改进蜜獾优化算法在寻优能力、稳定性和收敛速度上均有明显提升;所提牵引变压器在线故障预测模型的故障诊断准确率为96.05%,相比于HBA.LSTM,准确率提高了2.44%,验证了所提方法的有效性。

    Abstract:

    To improve the accuracy of online fault prediction for traction transformers, an online fault diagnosis method based on random forest feature optimization and improved honey badger optimization algorithm is proposed. Firstly, the SMOTE algorithm is used for data balancing processing, and the uncoded ratio method is adopted to expand the fault diagnosis; secondly, the feature vector set is ranked by importance using RF, and then input into the Extreme Learning Machine, Support Vector Machine, and Long Short Term Memory Neural Network to obtain the optimal combination of the base model and the number of features; then, the honey badger optimization algorithm was improved by combining Tent chaotic mapping strategy, improved control factor, and pinhole imaging strategy, and compared with other optimization algorithms to demonstrate its effectiveness in optimization ability, stability, and convergence speed; finally, by combining the improved honey badger optimization algorithm with the optimal base model and number of features, the problem of hyperparameter setting in the base model was effectively solved. The experimental results show that the fault diagnosis accuracy of the proposed online fault prediction model for traction transformers is 96.05%, which is 2.44% higher than that of HBA-LSTM, verifying the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

迟青光,蒋瑞培,闫东旭.基于RF和改进蜜獾优化的牵引变压器在线故障预测[J].电子测量技术,2025,48(21):119-128

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码