基于改进YOLO11的水下目标检测模型
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学广西高校先进制造与自动化技术重点实验室 桂林 541006;2.桂林理工大学机械与控制工程学院 桂林 541006;3.中国科学院深圳先进技术研究院 深圳 518055;4.盛云科技有限公司 昆明 650000

作者简介:

通讯作者:

中图分类号:

TP391; TN919.8

基金项目:

国家自然科学基金-联合基金项目(U21A20487)、云南省科技人才与平台计划(院士专家工作站)(202305AF150152)、深圳市科技计划科技重大专项(KJZD20240903100000001)资助


Underwater object detection model based on improved YOLOv11
Author:
Affiliation:

1.Key Laboratory of Advanced Manufacturing and Automation Technology, Guilin University of Technology, Guilin,541006, China;2.College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China; 3.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 4.Shengyun Technology Company Limited, Kunming 650000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在复杂的水下环境中,针对传统YOLO目标检测方法检测性能差等问题,提出一种基于改进YOLO11的水下目标检测模型。首先,通过引入上下文引导模块CGBD,采用多尺度特征提取器增强网络捕获能力;其次,为解决网络中特征冗余导致参数量过大的问题,设计轻量化高效聚合模块RGCSPELAN为模型减负;针对原有检测头定位识别能力不足且计算成本较高的问题,通过融合重参数化策略与细节增强卷积构建轻量高效的DEC-Head检测头。此外采用Wise-Inner-MPD损失函数提升模型的泛化能力并加速收敛。在URPC数据集中的实验结果表明,相较于基准模型YOLO11,本文提出的方法在mAP50和mAP50-90平均精度均值上分别提升了2.4%和2.1%。并且在RUOD数据集的实验结果中,本文所改进模型平均精度均值mAP50相比YOLO11提升了1.3%,召回率R提升了1.5%,较其他主流检测方法能够展现出更优的水下目标检测性能。

    Abstract:

    In the complex underwater environment, aiming at the poor detection performance of traditional YOLO target detection method, an underwater target detection model based on improved YOLO11 is proposed. Firstly, by introducing context guidance module CGBD, a multi-scale feature extractor is used to enhance the network capture capability. Secondly, in order to solve the problem that the number of parameters is too large due to feature redundancy in the network, the lightweight and efficient aggregation module RGCSPELAN is designed to reduce the burden of the model. To solve the problem that the localization and recognition ability of the original detection head is insufficient and the calculation cost is high, a lightweight and efficient DEC-Head detection head is constructed by combining the heavy parameterization strategy and detail enhancement convolution. In addition, Wise-Inner-MPD loss function is used to improve the generalization ability and accelerate the convergence of the model. The experimental results in URPC dataset show that compared with the benchmark model YOLO11, the proposed method improves the mean accuracy of mAP50 and MAP50-90 by 2.4% and 2.1% points respectively. Moreover, in the experimental results of RUOD dataset, Compared with YOLO11, the average accuracy of the improved model mAP50 increased by 1.3% and the recall rate R increased by 1.5%, showing better underwater target detection performance than other mainstream detection methods.

    参考文献
    相似文献
    引证文献
引用本文

方侦波,高向阳,张锲石,程俊,杨梦杰.基于改进YOLO11的水下目标检测模型[J].电子测量技术,2025,48(15):159-167

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告