CS-SegNet:新型的脑卒中病灶分割网络
DOI:
CSTR:
作者:
作者单位:

1.江南大学轻工过程先进控制教育部重点实验室 无锡 214122;2.江南大学附属医院神经内科 无锡 214122

作者简介:

通讯作者:

中图分类号:

TP391;TN911

基金项目:

国家自然科学基金(61903157)项目资助


CS-SegNet: Novel segmentation network for cerebral stroke lesions
Author:
Affiliation:

1.Key Laboratory of Advanced Control in Light Industry Processes, Ministry of Education,Jiangnan University, Wuxi 214122, China;2.The Affiliated Hospital of Jiangnan University, Department of Neurology,Wuxi 214122, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑卒中是一种全球范围内导致高死亡率和残疾率的严重疾病,临床上通过早期准确的影像诊断实现早期预防和及时治疗。然而,传统的影像诊断方法对医生的知识水平和经验存在很强的依赖性,容易漏检不明显的病变特征。为此,提出了一种新型图像分割模型CS-SegNet,旨在自动分割脑卒中CT图像中的病灶区域,从而辅助诊断。CS-SegNet基于UNet-Resnet50架构,在下采样阶段引入通道和空间注意力(CASA)模块,增强对关键区域上下文信息的提取能力;在上采样阶段,结合RDSConv模块,通过残差学习和稠密连接优化卷积操作,提高特征表达能力,改善复杂背景下的分割精度;跳跃连接部分引入多尺度通道注意力(MSCA)模块,整合低层次细节信息和高层次语义信息,提升分割结果的精度和一致性。实验结果显示,CS-SegNet在分割准确率、平均交并比和召回率上分别达到99.79%、91.52%和93.83%,比UNet-Resnet50基础网络的性能分别提升了0.14%、5.11%和4.05%,并在多个对比实验中表现最优,相比于现有主流模型,该模型在脑卒中病灶分割中具有有效性以及良好的分割精度与学习能力。

    Abstract:

    Stroke is a serious disease that causes high mortality and disability rates worldwide. Early and accurate imaging diagnosis is used clinically to achieve early prevention and timely treatment. However, traditional imaging diagnostic methods have a strong dependence on the knowledge and experience of doctors, which can easily miss unclear lesion features. To this end, a novel image segmentation model CS-SegNet has been proposed, aimed at automatically segmenting lesion areas in stroke CT images to assist in diagnosis. CS-SegNet is based on the UNet-Resnet50 architecture and introduces Channel and Spatial Attention (CASA) modules in the down sampling stage to enhance its ability to extract contextual information from key regions; in the up sampling stage, combined with the RDSConv module, residual learning and dense connections are used to optimize convolution operations, improve feature expression ability, and enhance segmentation accuracy in complex backgrounds; the skip connection part introduces a multi-scale channel attention (MSCA) module, which integrates low-level detail information and high-level semantic information to improve the accuracy and consistency of segmentation results. The experimental results showed that CS-SegNet achieved segmentation accuracy, average intersection to union ratio, and recall rate of 99.79%, 91.52%, and 93.83%, respectively, which improved the performance of UNet Resnet50 basic network by 0.14%, 5.11%, and 4.05%, and performed the best in multiple comparative experiments. Compared with existing mainstream models, this model has effectiveness, good segmentation accuracy, and learning ability in stroke lesion segmentation.

    参考文献
    相似文献
    引证文献
引用本文

刘煜莹,李超生,李恭新. CS-SegNet:新型的脑卒中病灶分割网络[J].电子测量技术,2025,48(11):1-11

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码