基于YOLOv8的钛棒表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.西北农林科技大学机械与电子工程学院 咸阳 712100;2.陕西省农业信息感知与智能服务重点实验室 咸阳 712100; 3.农业农村部农业物联网重点实验室 咸阳 712100;4.陕西信达合瑞科技有限公司 咸阳 71200

作者简介:

通讯作者:

中图分类号:

TP 391.4;TN911.73

基金项目:

陕西省秦创原“科学家+工程师”队伍建设(2022KXJ-048)、重点项目-秦创原总窗口“四链”融合,人工智能在钛打磨机器人打磨工艺数字产业化的应用研究(2024PT-ZCK-24)、西安市重点产业链技术攻关项目(23ZDCYJSGG0029-2023)、陕西省技术创新引导专项(2024ZC-YYDP-85)项目资助


Surface defect detection of titanium rod based on YOLOv8
Author:
Affiliation:

1. College of Mechanical and Electronic Engineering,Northwest A&F University,Xianyang 712100, China; 2. Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service,Xianyang 712100, China; 3. Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture and Rural Affairs,Xianyang 712100,China; 4. Shanxi Xinda Herui Technology Co., Ltd., Xianyang 712000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钛棒打磨是钛材型材制造的关键步骤,其表面裂纹检测定位是自动化打磨的基础。针对传统目标检测模型对狭长裂纹检测精度低、泛化能力差、计算效率低等问题,提出基于改进YOLOv8s的DEBM-YOLO模型。通过添加ELA注意力机制捕捉裂纹的长距离空间依赖关系;采用DCNv3卷积模块增强主干网络的感受野和表示能力;使用双向加权特征金字塔结构替换YOLOv8中原有特征金字塔结构改善多尺度特征融合;最后,采用MPDIoU替换CIoU以提升泛化性能和收敛速度。在实地拍摄的数据集上的实验结果表明,改进后的DEBM-YOLO模型参数量下降4.5%,精确度上升1.9%,mAP@0.5上升1.4%,mAP@0.5:0.95上升1.9%,召回率上升4.9%,同时得到了检测精度提升与轻量化。

    Abstract:

    The surface crack detection and localization for titanium bar polishing was identified as a fundamental step in the manufacturing of titanium profiles. To address the issues of low detection accuracy, poor generalization ability, and low computational efficiency of traditional target detection models for narrow cracks, an improved YOLOv8s model named DEBM-YOLO was proposed. The ELA attention mechanism was added to capture long-range spatial dependencies of cracks. The DCNv3 convolution module was adopted to enhance the receptive field and representation ability of the backbone network. A bidirectional weighted feature pyramid structure replaced the original feature pyramid structure in YOLOv8 to improve multi-scale feature fusion. Finally, MPDIoU was used instead of CIoU to boost generalization performance and convergence speed. Experiments on a dataset captured in real environments showed that the improved DEBM-YOLO model reduced the number of parameters by 4.5%, increased precision by 1.9%, raised mAP@0.5 by 1.4%, mAP@0.5:0.95 by 1.9%, and recall by 4.9%. The model now achieves both enhanced detection accuracy and lightweight design.

    参考文献
    相似文献
    引证文献
引用本文

窦维嘉,陈凯,王娟平,秦立峰.基于YOLOv8的钛棒表面缺陷检测[J].电子测量技术,2025,48(14):56-64

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码