基于改进YOLOv8的道路缺陷检测
DOI:
CSTR:
作者:
作者单位:

山西大学物理电子工程学院 太原 030006

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

山西省基础研究计划项目(202203021222016)资助


Road defect detection based on improved YOLOv8
Author:
Affiliation:

College of Physics and Electronic Engineering, Shanxi University,Taiyuan 030006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前道路缺陷检测模型在复杂背景下检测精度不高、计算复杂度高、错检漏检率高的问题,本文基于YOLOv8模型进行了改进。首先,在模型的特征提取网络(Backbone)中融入EMA注意力机制,提高模型的特征表示能力,同时保留重要信息、减少计算成本;其次,将轻量级的特征融合网络结构SlimNeck与加权特征融合机制Weighted Fusion结合构成新的颈部网络结构SWNeck,有效降低模型参数量与计算复杂度,提高特征融合效率,减少噪声的特征冗余;最后,引入Slide Loss权重函数,给难以正确分类的样本赋予更大的权重,提高模型对于道路缺陷中的难样本数据的学习能力,进一步增强模型检测性能。实验结果表明,改进后的道路缺陷检测模型相较于原YOLOv8n模型mAP提高2.7%,模型参数量、计算量分别降低7%和10%。

    Abstract:

    In order to solve the problems of low detection accuracy, high computational complexity and high false detection and missed detection rate of the current road defect detection model in complex background, this paper is improved based on the YOLOv8 model. Firstly, the EMA attention mechanism is integrated into the feature extraction network(Backbone) of the model to improve the feature representation ability of the model, while retaining important information and reducing the computational cost .Secondly, the lightweight feature fusion network structure SlimNeck and the weighted feature fusion mechanism Weighted Fusion were combined to form a new neck network structure SWNeck, which effectively reduced the number of model parameters and computational complexity, improved the feature fusion efficiency, and reduced the feature redundancy of noise. Finally, the Slide Loss weight function is introduced to give greater weight to the samples that are difficult to classify correctly, improve the learning ability of the model for difficult sample data in road defects, and further enhance the detection performance of the model.The experimental results show that the improved road defect detection model improved mAP by 2.7% compared to the original YOLOv8n model, and the amount of parameters and computational complexity of the model were reduced by 7% and 10%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

王晓雯,于骐瑞,常居泰.基于改进YOLOv8的道路缺陷检测[J].电子测量技术,2025,48(14):154-161

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码