融合改进A*算法和人工势场法的机器鱼路径规划
DOI:
CSTR:
作者:
作者单位:

新疆大学机械工程学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TN820.4; TP242

基金项目:

国家自然科学基金(62063033)项目资助


Path planning of robotic fish by combining improved A* algorithm and artificial potential field method
Author:
Affiliation:

College of Mechanical Engineering, Xinjiang University,Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统路径规划算法在路径规划时效率较低、路径不平滑、动态避障效果较差等问题,本文提出了一种将A*算法方法与人工势场法(APF)相结合的混合路径规划方法。针对A*算法采用了动态加权法,根据机器鱼行进的位置及机器鱼与障碍物的距离为指标来调整启发函数的权重,同时采用搜索角度规则表,减少搜索领域以提高效率;另一方面,采用高斯滤波法对所获得的最佳路径进行曲线平滑。然后将改进后的A*算法生成的路径最为APF算法的搜索路径,在实现最短路径规划的基础上实现了动态避障。最后进行了仿真实验,将改进的A*算法应用在4种障碍物不同的地图和6种大小不同的地图上。实验结果表明,与原始A*算法相比,改进后的A*算法4种障碍物不同的地图中,搜索时间平均减少了52.32%,搜索节点数平均减少了56.60%,路径长度减少了6.33%;在6种不同尺寸的地图下,搜索节点数平均减少了49.60%,搜索时间平均减少了40.89%,路径长度平均减少了5.55%;融合算法可以在具有动态障碍物的地图下成功地进行动态避障及路径规划。

    Abstract:

    To solve the problems of traditional path planning algorithms, such as low efficiency in path planning, unsmooth paths, and poor dynamic obstacle avoidance, this paper proposes a path planning method that combines the A* algorithm with the APF algorithm. For the A* algorithm, a dynamic weighting method is used to adjust the weight of the heuristic function according to the position of the traveling robotic fish and the distance between the robotic fish and the obstacles as an index; then the Gaussian filtering method is used to curve-smooth the obtained optimal path. Then the path generated by the improved A* algorithm is used as the search path of the APF algorithm, and dynamic obstacle avoidance is carried out on the basis of realizing the shortest path planning. The results of simulation experiments show that the improved A* algorithm obstacle different maps, the average reduction of the search time is 52.32%, the average reduction of the number of search nodes is 56.60%, the average reduction of the path length is 6.33%; under different sizes of maps, the average reduction of the number of search nodes is 49.60%, the average reduction of the search time is 40.89%, the average reduction of the path length is 5.55%. The fusion algorithm can perform successful dynamic obstacle avoidance and path planning under maps with dynamic obstacles.

    参考文献
    相似文献
    引证文献
引用本文

王慧锬,陈坤,何丽,白康乐.融合改进A*算法和人工势场法的机器鱼路径规划[J].电子测量技术,2025,48(13):58-72

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告