基于双重模糊注意力机制的图像分类方法
DOI:
CSTR:
作者:
作者单位:

1.常州大学王诤微电子学院 常州 213159; 2. 常州大学计算机与人工智能学院 常州 213159; 3. 南通大学医学院 南通 226001; 4. 常熟理工学院电气与自动化工程学院 苏州 215500

作者简介:

通讯作者:

中图分类号:

TP391.4; TN911.73

基金项目:

国家自然科学基金(62106025、51877013)、江苏省自然科学基金(BK20210940)、江苏省“333工程”(2024-3-0484)项目资助


Image classification method based on dual fuzzy attention mechanism
Author:
Affiliation:

1.Wang Zheng School of Microelectronics, Changzhou University,Changzhou 213159, China; 2.School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213159, China; 3.Medical School, Nantong University, Nantong 226001, China; 4.School of Electrical and Automation Engineering, Changshu Institute of Technology, Suzhou 215500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人类视觉系统在处理外界信息时,往往聚焦于目标的关键特征和结构,同时弱化非目标区域。此外,在经典的CNN模型中,图像中的噪声经逐层传播可能会干扰目标关键信息表征,导致无法准确提取特征。为此,本文提出一种基于双重模糊注意力机制的图像分类方法DFAM-CNN。首先,针对CNN卷积层输出的特征图,通过引入模糊逻辑技术设计了模糊通道注意力机制和模糊空间注意力机制,并利用这两个机制在特征图的通道和空间方向上进行映射变换,生成与原特征图一一对应的重要模糊化特征图。其次,基于所有重要模糊化特征图,实现所有特征图通道权重和特征图内每个元素权重的计算,从而在通道和空间方向上突出与目标相关的特征。最后,通过模糊聚合操作对特征图进行降维,同时保留与目标相关的特征。为验证DFAM-CNN的有效性,在公开数据集MedMNIST和应用案例数据集上进行了大量的实验,实验结果验证了DFAM-CNN的有效性。特别地,与传统的最大池化方法相比,DFAM-CNN在BreastMNIST和DermaMNIST子集上的准确率分别提升了8.67%和7.40%。

    Abstract:

    The human visual system often focuses on the key features and structures of the target while weakening non-target areas when processing external information. In addition, in classical CNN models, noise in the image that propagates layer by layer may interfere with the representation of key information of the target, resulting in inaccurate feature extraction. Therefore, this article proposes an image classification method based on the dual fuzzy attention mechanism, named DFAM-CNN. Specifically, for the feature maps output by CNN convolutional layers, fuzzy channel attention mechanism and fuzzy spatial attention mechanism were first designed by introducing fuzzy logic technology. These two mechanisms were used to map and transform the feature maps along both the channel direction and spatial direction for generating important fuzzy feature maps that correspond to the original feature maps. Then, the channel weights of all feature maps and the weights of each element within each feature map were calculated based on all the determined important fuzzy feature maps, thereby highlighting the features related to the target in both the channel and spatial directions. Finally, dimensionality reduction was performed on the feature maps through fuzzy aggregation operations while retaining target-relevant features. To validate the effectiveness of DFAM-CNN, extensive experiments were conducted on both the public MedMNIST dataset and application-specific datasets. The experimental results validated the effectiveness of DFAM-CNN. Notably, compared with traditional max-pooling method, DFAM-CNN achieved accuracy improvements of 8.67% and 7.40% on the BreastMNIST and DermaMNIST subsets, respectively.

    参考文献
    相似文献
    引证文献
引用本文

顾苏杭,王冶,张远鹏,焦竹青.基于双重模糊注意力机制的图像分类方法[J].电子测量技术,2025,48(19):193-204

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-01
  • 出版日期:
文章二维码